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Introduction 

“I hear and I forget. I see and I remember. I do and I understand”. This ancient 

Confucius quotation reflects the basic premise of many contemporary approaches 

to education. The idea that learners should not passively receive information but 

instead must be encouraged to actively construct knowledge is widely accepted 

(Cobb, 1994). Inquiry-based learning, which has its roots in the work by Dewey 

(1938) and Bruner (1991), is one example of how the concept of active, self-directed 

knowledge construction can be implemented in high school science classrooms. 

Inquiry learning, in short, requires students to learn science by doing science. 

Recent European reports advocate that improvements in science education should 

be brought about through inquiry-based approaches, as such a pedagogy is more 

likely to increase students’ interest and attainment levels (Osborne & Dillon, 2008; 

Rocard et al., 2007). A more elaborate definition of inquiry learning is given by the 

National Science Foundation  (2000, p. 2), which characterized inquiry learning as 

"An approach to learning that involves a process of exploring the natural or 

material world, and that leads to asking questions, making discoveries, and 

rigorously testing those discoveries in the search for new understanding".  

The inquiry learning process has been captured in various phase-like models that, 

despite their idiosyncratic differences, share at least three iterative activities: 

hypothesizing, experimenting, and evaluating evidence (cf. Klahr & Dunbar, 1988; 

Zimmerman, 2007). After an initial orientation phase, where students get 

acquainted with the phenomenon they will be investigating (e.g., gravity), students 

formulate hypotheses (e.g., I think that the weight of an object influences the speed 

with which it drops). In order to test these hypotheses, students can design 

experiments. An experiment to test the exemplary hypothesis would be to drop a 

heavy and light ball at the same time. Following the experiment, students have to 

evaluate the data (the balls landed at the same time) in order to draw conclusions 

(weight of an object does not influence the speed with which it drops). These 

inquiry activities are iterative and cyclical by nature in that conclusions generally 

lead to new hypotheses (e.g., perhaps the size of a ball influences the speed with 

which it drops), which in turn lead to new experiments, new conclusions, and so 

on.  

Nowadays, computer-supported inquiry learning environments offer resources to 

facilitate inquiry learning. Computer simulations have long since lain at the heart 

of these environments, and currently these simulations are increasingly being 

supplemented with opportunities for students to build computer models of the 

phenomena they are investigating via the simulation. As in authentic scientific 

inquiry, modelling is considered an integral part of the inquiry learning process in 
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that students can build computer models to express their understanding of the 

relation between variables (de Jong & van Joolingen, 2008; van Joolingen, de Jong, 

Lazonder, Savelsbergh, & Manlove, 2005; White, Shimoda, & Frederiksen, 1999).  

The virtues of this pedagogy, in which inquiry learning and computer modelling 

are combined, was investigated in the four studies that comprise this thesis. As this 

synergistic approach to science learning is relatively new and little documented in 

the research literature, its key characteristics are introduced in the section below. 

 

Learning with computer simulations and models  

Static diagrams in books and on blackboards do not convey the intermittent nature 

of flows and of the varying rates of change found in dynamic systems (Riley, 1990). 

Simulations, models, and animations, on the other hand, add a temporal 

dimension to the representation of a phenomenon. As both simulations and 

models provide students with the additional possibility to control the flow of 

dynamic systems through time, they have been recognized as powerful tools to 

learn about dynamic scientific phenomena that are otherwise too costly, too 

dangerous, or too difficult to observe (Eysink et al., 2009). 

 

Simulation-based inquiry learning 

With the increasing availability of computers, the use of computer simulations in 

education has greatly expanded. The interest in simulation-based learning has 

increased accordingly as it has been the focus of 510 studies into science education 

over the past decade (Rutten, van Joolingen, & van der Veen, 2012). Compared to 

traditional, more expository forms of instruction, several studies have shown that 

learning with simulations is more effective for promoting science content 

knowledge, developing process skills, and facilitating conceptual change (e.g., 

Alfieri, Brooks, Aldrich, & Tenenbaum, 2011; Eysink et al., 2009; Marušić & Sliško, 

2011; Scalise et al., 2011; Smetana & Bell, 2012). These promising results, however, 

only hold when the inquiry process is adequately structured and scaffolded.  

Simulation-based inquiry learning enables students to infer the characteristics of 

the model underlying the simulation through experimentation (de Jong & van 

Joolingen, 1998). The two simulations that were used in the studies of this thesis 

are shown in Figure 1.1. Both simulations represent an electrical circuit containing 

a power source, two devices that act as resistors, and a capacitor. Participants in 

the first experimental study (Chapter 2) received the simulation that is depicted in 

the left pane of Figure 1.1, which models the influence of resistance on the charging  
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(right pane)

 

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

left light bu

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

hypotheses, students could 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

 

Learning by modelling

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

objects or concepts

and ther

explanations for scientific phenomena. 

them to develop 

Chapter 1

4 

Figure 1

(right pane)

 

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

left light bu

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

hypotheses, students could 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

 

Learning by modelling

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

objects or concepts

and ther

explanations for scientific phenomena. 

them to develop 

Chapter 1

Figure 1

(right pane)

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

left light bu

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

hypotheses, students could 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Learning by modelling

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

objects or concepts

and ther

explanations for scientific phenomena. 

them to develop 

Chapter 1

Figure 1.1. Screen capture

(right pane).

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

left light bu

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

hypotheses, students could 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Learning by modelling

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

objects or concepts

and thereby support the visualization of some phenomenon; and (c) to provide 

explanations for scientific phenomena. 

them to develop 

Chapter 1 

Screen capture

. 

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

left light bulb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

hypotheses, students could 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Learning by modelling

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

objects or concepts

eby support the visualization of some phenomenon; and (c) to provide 

explanations for scientific phenomena. 

them to develop 

Screen capture

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

hypotheses, students could 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Learning by modelling

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

objects or concepts

eby support the visualization of some phenomenon; and (c) to provide 

explanations for scientific phenomena. 

them to develop 

Screen capture

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

hypotheses, students could 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Learning by modelling

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

objects or concepts; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

explanations for scientific phenomena. 

them to develop a 

Screen capture of a 

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

hypotheses, students could 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Learning by modelling

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

explanations for scientific phenomena. 

a deep understanding of difficult 

of a simulation 

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

hypotheses, students could 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Learning by modelling 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

explanations for scientific phenomena. 

deep understanding of difficult 

simulation 

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

hypotheses, students could design and con

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

explanations for scientific phenomena. 

deep understanding of difficult 

simulation 

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

design and con

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

explanations for scientific phenomena. 

deep understanding of difficult 

simulation with one input variable (left pane) and four input variables 

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

formation, experimentation, and evaluating evidence

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

design and con

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

explanations for scientific phenomena. 

deep understanding of difficult 

 

with one input variable (left pane) and four input variables 

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

valuating evidence

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

design and con

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

explanations for scientific phenomena. 

deep understanding of difficult 

with one input variable (left pane) and four input variables 

of the capacitor. The right pane of Figure 1

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

valuating evidence

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

design and con

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

explanations for scientific phenomena. Students benefit from modelling as it allows 

deep understanding of difficult 

with one input variable (left pane) and four input variables 

of the capacitor. The right pane of Figure 1.1 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

valuating evidence

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

design and conduct experiments

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

deep understanding of difficult 

with one input variable (left pane) and four input variables 

 displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

valuating evidence

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

duct experiments

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

deep understanding of difficult 

with one input variable (left pane) and four input variables 

displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

valuating evidence

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

duct experiments

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students h

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached. 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

deep understanding of difficult 

with one input variable (left pane) and four input variables 

displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

valuating evidence. Students could 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

duct experiments

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

resistor value. Following the experiment, students have to inspect the data (read 

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

charging capacitors in an electrical circuit is reached.  

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

deep understanding of difficult domain 

with one input variable (left pane) and four input variables 

displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

. Students could 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

duct experiments

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

ave to inspect the data (read 

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

domain 

with one input variable (left pane) and four input variables 

displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

. Students could 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

duct experiments by assigning resistance 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

ave to inspect the data (read 

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

domain concepts, 

with one input variable (left pane) and four input variables 

displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

. Students could 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

by assigning resistance 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

ave to inspect the data (read 

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

concepts, 

with one input variable (left pane) and four input variables 

displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

. Students could 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

by assigning resistance 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

ave to inspect the data (read 

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

the charge after loading), that can lead to new hypotheses (e.g., I think that the 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

concepts, 

with one input variable (left pane) and four input variables 

displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail.

Both simulations enabled students to engage in the processes of hypothesis 

. Students could 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

by assigning resistance 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

ave to inspect the data (read 

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

I think that the 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

concepts, 

with one input variable (left pane) and four input variables 

displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

the direct influence of the components in the simulation in greater detail. 

Both simulations enabled students to engage in the processes of hypothesis 

. Students could hypothesize

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

by assigning resistance 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

ave to inspect the data (read 

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

I think that the 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

concepts, as well as

 

with one input variable (left pane) and four input variables 

displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

Both simulations enabled students to engage in the processes of hypothesis 

hypothesize

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

by assigning resistance 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

ave to inspect the data (read 

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

I think that the 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

as well as

 

with one input variable (left pane) and four input variables 

displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

Both simulations enabled students to engage in the processes of hypothesis 

hypothesize

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

by assigning resistance 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

ave to inspect the data (read 

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

I think that the 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

as well as

with one input variable (left pane) and four input variables 

displays the simulation that was used 

in Chapters 3, 4, and 5. This simulation had more input parameters (power source, 

lb, right light bulb and capacitance), that enabled students to examine 

Both simulations enabled students to engage in the processes of hypothesis 

hypothesize 

about the effect of the resistance on the charging of the capacitor (e.g., I think that 

the resistor value influences the charge after loading). In order to test these 

by assigning resistance 

values in the simulation. An experiment to test the exemplary hypothesis would be 

to run the simulation twice: once with a low resistor value and once with a high 

ave to inspect the data (read 

from a table or a graph that the charge after loading was the same in both 

simulation runs) in order to draw conclusions (the resistor value does not influence 

I think that the 

resistor value influences the capacitors’ charging speed), which in turn leads to 

new experiments, new conclusions and so on until a full understanding of 

Coll and Lajium (2011) state three principal purposes of modelling in the sciences 

as reported in the science education literature: (a) to produce simpler forms of 

; (b) to provide stimulation for learning or concept generation, 

eby support the visualization of some phenomenon; and (c) to provide 

Students benefit from modelling as it allows 

as well as a 



bette

Zhang, & Neilson, 2011). 

improve learning because students have to explicate their newly acquired 

understanding, which makes 

before (Kafai & Resnick, 1996; Kolloffel, 

2007). 

forms; examples include drawings, conce

3D

the constructed artefact

have a temporal dimension too. Furthermore, constructi

with inquiry as 

scientific 

N

more well

Stratford, Krajcik, & Solowa

recently, SCY

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

The Co

(Forrester, 1961). 

graphical elements that are linked by relation arrows. The model in this figure 

shows

respectively, which in turn influence the bank account balance. 

 

 

Mon

account

 

Monthly income 

determines how much 

money goes into the 

account

 

Salary determines the 

monthly income

Figure 

bette

Zhang, & Neilson, 2011). 

improve learning because students have to explicate their newly acquired 

understanding, which makes 

before (Kafai & Resnick, 1996; Kolloffel, 

2007). 

forms; examples include drawings, conce

3D-

the constructed artefact

have a temporal dimension too. Furthermore, constructi

with inquiry as 

scientific 

Nowadays

more well

Stratford, Krajcik, & Solowa

recently, SCY

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

The Co

(Forrester, 1961). 

graphical elements that are linked by relation arrows. The model in this figure 

shows

respectively, which in turn influence the bank account balance. 

 

 

Money is going into the 

account

 

Monthly income 

determines how much 

money goes into the 

account

 

Salary determines the 

monthly income

Figure 

better understanding of science processes and the nature of 

Zhang, & Neilson, 2011). 

improve learning because students have to explicate their newly acquired 

understanding, which makes 

before (Kafai & Resnick, 1996; Kolloffel, 

2007). Besides computer models (

forms; examples include drawings, conce

-sketches. Yet models have the advantage 

the constructed artefact

have a temporal dimension too. Furthermore, constructi

with inquiry as 

scientific 

owadays

more well

Stratford, Krajcik, & Solowa

recently, SCY

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

The Co

(Forrester, 1961). 

graphical elements that are linked by relation arrows. The model in this figure 

shows 

respectively, which in turn influence the bank account balance. 

ey is going into the 

account 

Monthly income 

determines how much 

money goes into the 

account 

Salary determines the 

monthly income

Figure 1.

r understanding of science processes and the nature of 

Zhang, & Neilson, 2011). 

improve learning because students have to explicate their newly acquired 

understanding, which makes 

before (Kafai & Resnick, 1996; Kolloffel, 

Besides computer models (

forms; examples include drawings, conce

sketches. Yet models have the advantage 

the constructed artefact

have a temporal dimension too. Furthermore, constructi

with inquiry as 

scientific inquiry.

owadays

more well

Stratford, Krajcik, & Solowa

recently, SCY

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

The Co-Lab modelling tool makes use of the system dynamics modelling language 

(Forrester, 1961). 

graphical elements that are linked by relation arrows. The model in this figure 

 how 

respectively, which in turn influence the bank account balance. 

ey is going into the 

Monthly income 

determines how much 

money goes into the 

Salary determines the 

monthly income

1.2. Annotated s

r understanding of science processes and the nature of 

Zhang, & Neilson, 2011). 

improve learning because students have to explicate their newly acquired 

understanding, which makes 

before (Kafai & Resnick, 1996; Kolloffel, 

Besides computer models (

forms; examples include drawings, conce

sketches. Yet models have the advantage 

the constructed artefact

have a temporal dimension too. Furthermore, constructi

with inquiry as 

inquiry.

owadays, several learning environments offer modelling platforms. Some of the 

more well-known examples include 

Stratford, Krajcik, & Solowa

recently, SCY

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

Lab modelling tool makes use of the system dynamics modelling language 

(Forrester, 1961). 

graphical elements that are linked by relation arrows. The model in this figure 

how 

respectively, which in turn influence the bank account balance. 

ey is going into the 

Monthly income 

determines how much 

money goes into the 

Salary determines the 

monthly income 

Annotated s

r understanding of science processes and the nature of 

Zhang, & Neilson, 2011). 

improve learning because students have to explicate their newly acquired 

understanding, which makes 

before (Kafai & Resnick, 1996; Kolloffel, 

Besides computer models (

forms; examples include drawings, conce

sketches. Yet models have the advantage 

the constructed artefact

have a temporal dimension too. Furthermore, constructi

with inquiry as 

inquiry.

several learning environments offer modelling platforms. Some of the 

known examples include 

Stratford, Krajcik, & Solowa

recently, SCY-Lab (de Jong et al., 2010). 

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

Lab modelling tool makes use of the system dynamics modelling language 

(Forrester, 1961). 

graphical elements that are linked by relation arrows. The model in this figure 

how salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

ey is going into the 

determines how much 

money goes into the 

Salary determines the 

Annotated s

r understanding of science processes and the nature of 

Zhang, & Neilson, 2011). 

improve learning because students have to explicate their newly acquired 

understanding, which makes 

before (Kafai & Resnick, 1996; Kolloffel, 

Besides computer models (

forms; examples include drawings, conce

sketches. Yet models have the advantage 

the constructed artefact

have a temporal dimension too. Furthermore, constructi

with inquiry as creating and using 

inquiry. 

several learning environments offer modelling platforms. Some of the 

known examples include 

Stratford, Krajcik, & Solowa

Lab (de Jong et al., 2010). 

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

Lab modelling tool makes use of the system dynamics modelling language 

(Forrester, 1961). As shown in Figure 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

ey is going into the 

Annotated screen capture of the 

r understanding of science processes and the nature of 

Zhang, & Neilson, 2011). 

improve learning because students have to explicate their newly acquired 

understanding, which makes 

before (Kafai & Resnick, 1996; Kolloffel, 

Besides computer models (

forms; examples include drawings, conce

sketches. Yet models have the advantage 

the constructed artefact

have a temporal dimension too. Furthermore, constructi

creating and using 

several learning environments offer modelling platforms. Some of the 

known examples include 

Stratford, Krajcik, & Solowa

Lab (de Jong et al., 2010). 

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

Lab modelling tool makes use of the system dynamics modelling language 

As shown in Figure 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

creen capture of the 

r understanding of science processes and the nature of 

Zhang, & Neilson, 2011). Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

understanding, which makes 

before (Kafai & Resnick, 1996; Kolloffel, 

Besides computer models (

forms; examples include drawings, conce

sketches. Yet models have the advantage 

the constructed artefact, and thus form the natural counterpart of simulations that 

have a temporal dimension too. Furthermore, constructi

creating and using 

several learning environments offer modelling platforms. Some of the 

known examples include 

Stratford, Krajcik, & Solowa

Lab (de Jong et al., 2010). 

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

Lab modelling tool makes use of the system dynamics modelling language 

As shown in Figure 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

creen capture of the 

r understanding of science processes and the nature of 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

understanding, which makes 

before (Kafai & Resnick, 1996; Kolloffel, 

Besides computer models (

forms; examples include drawings, conce

sketches. Yet models have the advantage 

and thus form the natural counterpart of simulations that 

have a temporal dimension too. Furthermore, constructi

creating and using 

several learning environments offer modelling platforms. Some of the 

known examples include 

Stratford, Krajcik, & Soloway, 1994), Co

Lab (de Jong et al., 2010). 

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

Lab modelling tool makes use of the system dynamics modelling language 

As shown in Figure 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

creen capture of the 

r understanding of science processes and the nature of 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

understanding, which makes them aware of knowledge gaps they had not noticed 

before (Kafai & Resnick, 1996; Kolloffel, 

Besides computer models (

forms; examples include drawings, conce

sketches. Yet models have the advantage 

and thus form the natural counterpart of simulations that 

have a temporal dimension too. Furthermore, constructi

creating and using 

several learning environments offer modelling platforms. Some of the 

known examples include 

y, 1994), Co

Lab (de Jong et al., 2010). 

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

Lab modelling tool makes use of the system dynamics modelling language 

As shown in Figure 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

creen capture of the 

r understanding of science processes and the nature of 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

before (Kafai & Resnick, 1996; Kolloffel, 

Besides computer models (hereafter

forms; examples include drawings, conce

sketches. Yet models have the advantage 

and thus form the natural counterpart of simulations that 

have a temporal dimension too. Furthermore, constructi

creating and using 

several learning environments offer modelling platforms. Some of the 

known examples include 

y, 1994), Co

Lab (de Jong et al., 2010). 

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

Lab modelling tool makes use of the system dynamics modelling language 

As shown in Figure 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

creen capture of the Co

r understanding of science processes and the nature of 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

before (Kafai & Resnick, 1996; Kolloffel, 

hereafter

forms; examples include drawings, conce

sketches. Yet models have the advantage 

and thus form the natural counterpart of simulations that 

have a temporal dimension too. Furthermore, constructi

creating and using 

several learning environments offer modelling platforms. Some of the 

known examples include 

y, 1994), Co

Lab (de Jong et al., 2010). 

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

Lab modelling tool makes use of the system dynamics modelling language 

As shown in Figure 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

Co-Lab 

r understanding of science processes and the nature of 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

before (Kafai & Resnick, 1996; Kolloffel, 

hereafter

forms; examples include drawings, conce

sketches. Yet models have the advantage 

and thus form the natural counterpart of simulations that 

have a temporal dimension too. Furthermore, constructi

creating and using models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

known examples include STELLA (Steed, 1992), Mod

y, 1994), Co-Lab (van Joolingen

Lab (de Jong et al., 2010). 

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co

combined simulations with modelling facilities. 

Lab modelling tool makes use of the system dynamics modelling language 

As shown in Figure 1.

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

Lab model

r understanding of science processes and the nature of 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

before (Kafai & Resnick, 1996; Kolloffel, Eysink, & de Jong, 2010; Rocard

hereafter: models), these artefacts can take several 

forms; examples include drawings, concept maps, physical objects, podcasts, and 

sketches. Yet models have the advantage 

and thus form the natural counterpart of simulations that 

have a temporal dimension too. Furthermore, constructi

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

STELLA (Steed, 1992), Mod

Lab (van Joolingen

Lab (de Jong et al., 2010). The Co

used in the studies of this thesis. This choice was based on practical reasons

start of this thesis research project, Co-Lab was the only environment that 

combined simulations with modelling facilities. 

Lab modelling tool makes use of the system dynamics modelling language 

1.2, s

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

model

r understanding of science processes and the nature of 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

Eysink, & de Jong, 2010; Rocard

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

sketches. Yet models have the advantage of

and thus form the natural counterpart of simulations that 

have a temporal dimension too. Furthermore, constructi

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

STELLA (Steed, 1992), Mod

Lab (van Joolingen

The Co

used in the studies of this thesis. This choice was based on practical reasons

Lab was the only environment that 

combined simulations with modelling facilities.  

Lab modelling tool makes use of the system dynamics modelling language 

2, system dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

modelling tool

r understanding of science processes and the nature of 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

Eysink, & de Jong, 2010; Rocard

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

of add

and thus form the natural counterpart of simulations that 

have a temporal dimension too. Furthermore, constructi

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

STELLA (Steed, 1992), Mod

Lab (van Joolingen

The Co-Lab learning environment was 

used in the studies of this thesis. This choice was based on practical reasons

Lab was the only environment that 

 

Lab modelling tool makes use of the system dynamics modelling language 

ystem dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

ing tool

r understanding of science processes and the nature of 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

Eysink, & de Jong, 2010; Rocard

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

adding

and thus form the natural counterpart of simulations that 

have a temporal dimension too. Furthermore, constructi

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

STELLA (Steed, 1992), Mod

Lab (van Joolingen

Lab learning environment was 

used in the studies of this thesis. This choice was based on practical reasons

Lab was the only environment that 

Lab modelling tool makes use of the system dynamics modelling language 

ystem dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

ing tool.  

r understanding of science processes and the nature of 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

Eysink, & de Jong, 2010; Rocard

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

ing a temporal dimension to 

and thus form the natural counterpart of simulations that 

have a temporal dimension too. Furthermore, constructing models is in keeping 

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

STELLA (Steed, 1992), Mod

Lab (van Joolingen

Lab learning environment was 

used in the studies of this thesis. This choice was based on practical reasons

Lab was the only environment that 

Lab modelling tool makes use of the system dynamics modelling language 

ystem dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

 

r understanding of science processes and the nature of 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

Eysink, & de Jong, 2010; Rocard

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

a temporal dimension to 

and thus form the natural counterpart of simulations that 

ng models is in keeping 

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

STELLA (Steed, 1992), Mod

Lab (van Joolingen et al., 2005) and, more 

Lab learning environment was 

used in the studies of this thesis. This choice was based on practical reasons

Lab was the only environment that 

Lab modelling tool makes use of the system dynamics modelling language 

ystem dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance. 

General 

r understanding of science processes and the nature of science (Campbell, 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

Eysink, & de Jong, 2010; Rocard

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

a temporal dimension to 

and thus form the natural counterpart of simulations that 

ng models is in keeping 

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

STELLA (Steed, 1992), Mod

et al., 2005) and, more 

Lab learning environment was 

used in the studies of this thesis. This choice was based on practical reasons

Lab was the only environment that 

Lab modelling tool makes use of the system dynamics modelling language 

ystem dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

respectively, which in turn influence the bank account balance.  

 

General 

science (Campbell, 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

Eysink, & de Jong, 2010; Rocard

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

a temporal dimension to 

and thus form the natural counterpart of simulations that 

ng models is in keeping 

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

STELLA (Steed, 1992), Mod

et al., 2005) and, more 

Lab learning environment was 

used in the studies of this thesis. This choice was based on practical reasons

Lab was the only environment that 

Lab modelling tool makes use of the system dynamics modelling language 

ystem dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

 

 

Money is leaving the 

account

 

Monthly expenses 

determine how much 

money leaves the 

account

 

Monthly expenses 

depend

fees and the amount of 

money in the account

General introduction

science (Campbell, 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

Eysink, & de Jong, 2010; Rocard

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

a temporal dimension to 

and thus form the natural counterpart of simulations that 

ng models is in keeping 

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

STELLA (Steed, 1992), Model-

et al., 2005) and, more 

Lab learning environment was 

used in the studies of this thesis. This choice was based on practical reasons

Lab was the only environment that 

Lab modelling tool makes use of the system dynamics modelling language 

ystem dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

Money is leaving the 

account

Monthly expenses 

determine how much 

money leaves the 

account

Monthly expenses 

epend

fees and the amount of 

money in the account

introduction

science (Campbell, 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

Eysink, & de Jong, 2010; Rocard

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

a temporal dimension to 

and thus form the natural counterpart of simulations that 

ng models is in keeping 

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

-It (Jackson, 

et al., 2005) and, more 

Lab learning environment was 

used in the studies of this thesis. This choice was based on practical reasons

Lab was the only environment that 

Lab modelling tool makes use of the system dynamics modelling language 

ystem dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

Money is leaving the 

account 

Monthly expenses 

determine how much 

money leaves the 

account 

Monthly expenses 

epend on contribution 

fees and the amount of 

money in the account

introduction

science (Campbell, 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

Eysink, & de Jong, 2010; Rocard 

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

a temporal dimension to 

and thus form the natural counterpart of simulations that 

ng models is in keeping 

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

It (Jackson, 

et al., 2005) and, more 

Lab learning environment was 

used in the studies of this thesis. This choice was based on practical reasons: at the 

Lab was the only environment that 

Lab modelling tool makes use of the system dynamics modelling language 

ystem dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

Money is leaving the 

Monthly expenses 

determine how much 

money leaves the 

Monthly expenses 

on contribution 

fees and the amount of 

money in the account

introduction

science (Campbell, 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

 et al., 

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

a temporal dimension to 

and thus form the natural counterpart of simulations that 

ng models is in keeping 

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

It (Jackson, 

et al., 2005) and, more 

Lab learning environment was 

: at the 

Lab was the only environment that 

Lab modelling tool makes use of the system dynamics modelling language 

ystem dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

Money is leaving the 

Monthly expenses 

determine how much 

money leaves the 

Monthly expenses 

on contribution 

fees and the amount of 

money in the account

introduction 

5 

science (Campbell, 

Creating artefacts such as computer models is assumed to 

improve learning because students have to explicate their newly acquired 

them aware of knowledge gaps they had not noticed 

et al., 

: models), these artefacts can take several 

pt maps, physical objects, podcasts, and 

a temporal dimension to 

and thus form the natural counterpart of simulations that 

ng models is in keeping 

models are common practice in authentic 

several learning environments offer modelling platforms. Some of the 

It (Jackson, 

et al., 2005) and, more 

Lab learning environment was 

: at the 

Lab was the only environment that 

Lab modelling tool makes use of the system dynamics modelling language 

ystem dynamics models consist of 

graphical elements that are linked by relation arrows. The model in this figure 

salary and contribution determine monthly income and expenses 

Money is leaving the 

determine how much 

on contribution 

fees and the amount of 

money in the account 

 

 



Chapter 1 

6 

Inquiry and modelling: the integrated approach to science learning 

When involved in modelling, students ideally go through four distinguishable 

stages: (1) model sketching, (2) model specification, (3) data interpretation, and (4) 

model revision (cf. Hogan & Thomas, 2001). Combining these stages with the 

inquiry learning activities outlined in the previous section provides a description 

of the integrated approach to science learning (cf. van Joolingen et al., 2005). When 

students have no prior knowledge of the domain, they carry out exploratory 

experiments to gain an initial understanding of the phenomena. Students with 

prior knowledge can skip this step and immediately start sketching a model 

outline to express their understanding of the phenomena. Subsequently students 

form hypotheses which they can investigate through the simulation. The results of 

these experiments are then used to transform the model sketch into a runnable 

model by specifying the relations between the variables in the model. Accordingly, 

the model can be conceived of as a hypothesis. During data interpretation, learners 

compare their model to data from the simulation, which during the conclusion 

phase, feeds their decisions to revise the model.  

However, in practice students have difficulty with both inquiry learning and 

modelling, which challenges the educational effectiveness of the integrated 

approach to science learning. For example, students are unable to infer hypotheses 

from (simulation) data, design inconclusive experiments, show inefficient 

experimentation behaviour, and ignore incompatible data (for extensive reviews, 

see de Jong & van Joolingen, 1998; Zimmerman, 2007). Regarding modelling, 

Hogan and Thomas (2001) noticed that students often fail to engage in dynamic 

iterations between examining output and revising models, and merely use output 

at the end of a session to check if the model’s behaviour matches their expectations. 

A related problem concerns the students’ lack of persistence in debugging their 

model to fine-tune its behaviour (Stratford, Krajcik, & Soloway, 1998). 

These findings suggest that students’ difficulties with inquiry and modelling both 

lie at a conceptual level. Most students manage to design and conduct experiments 

with a simulation; inferring knowledge from these experiments appears to be the 

major source of difficulty. Likewise, students are capable of building syntactically 

correct models, but often fail to relate their knowledge of phenomena to those 

models (Sins, Savelsbergh, & van Joolingen, 2005). As this ineffective behaviour is 

a serious obstacle to learning, students might benefit from additional support 

during their inquiry and modelling practices. The studies reported in this thesis 

sought to establish the need for and effects of various types of support. The general 

research question that guided these investigations was: 

How can learning with computer simulations and models be improved by embedded support?  
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Thesis outline 

The general research question was addressed in four empirical studies. The study 

in Chapter 2 concerned an empirical assessment of high school students’ need for 

support. Toward this end, a target group of domain novices was compared to two 

more knowledgeable reference groups. Comparisons of the groups’ behaviour and 

performance were conducted in order to determine which inquiry and modelling 

skills would require additional support. The studies reported in Chapter 3 and 4 

investigated whether model progression (i.e., gradually increasing task 

complexity) could help compensate for these observed skill deficiencies. The study 

depicted in Chapter 3 aimed to offer empirical evidence regarding the instructional 

efficacy of model progression per se. Two types of model progression were 

examined and compared to a control group that received no additional support. 

Chapter 4 describes a study that aimed to further investigate the effects of model 

progression by examining the influence of learning path restrictions. In this study, 

the most effective type of model order progression from Chapter 3 was compared 

with two variants that had either more liberal or more strict requirements to 

progress to more complex subject matter. The study in Chapter 5 explored whether 

complementing model progression with worked examples would further enhance 

students’ inquiry and modelling performance and learning. Finally, Chapter 6 

gives a summary of the findings, presents conclusions drawn from the four 

studies, and discusses the theoretical and practical implications of the research.  
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Chapter 2 

 

Finding out how they find it out: 

An empirical analysis of inquiry learners' 

need for support1 
 

Abstract 

Inquiry learning environments increasingly incorporate modelling facilities for 

students to articulate their research hypotheses and (acquired) domain knowledge. 

This study compared performance success and scientific reasoning of university 

students with high prior knowledge (n = 11), students from senior high school (n = 

10), and junior high school (n = 10) with intermediate and low prior knowledge 

respectively, in order to reveal domain novice’s need for support in such 

environments. Results indicated that the scientific reasoning of both groups of high 

school students was comparable to that of the experts. As high school students 

achieved significantly lower performance success scores, their expert-like 

behaviour was rather ineffective; qualitative analyses substantiated this 

conclusion. Based on these findings, implications for supporting domain novices in 

inquiry learning environments are advanced. 

                                                 
1 Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2010). Finding out how they find it 

out: An empirical analysis of inquiry learners' need for support. International 

Journal of Science Education, 32, 2033-2053. doi: 10.1080/09500690903289993 (with 

minor modifications). 
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Introduction 

Computer-supported inquiry learning environments essentially enable students to 

learn science by doing science, offering resources to develop a deep understanding 

of a domain by engaging in scientific reasoning processes such as hypothesis 

generation, experimentation, and evidence evaluation. The central aim of this 

investigative learning mode is twofold: students should develop domain 

knowledge and proficiency in scientific inquiry (cf. Gobert & Pallant, 2004). 

Unfortunately the educational advantages of inquiry learning are often challenged 

by students’ poor inquiry skills (e.g., de Jong & van Joolingen, 1998). Researchers 

and designers therefore often attempt to compensate for students’ skill deficiencies 

by offering support such as proposition tables to help generate hypotheses (Shute, 

Glaser, & Raghavan, 1989), adaptive advice for extrapolating knowledge from 

simulations (Leutner, 1993), or regulative scaffolds to assist students in planning, 

monitoring, and evaluating their inquiry (Davis & Linn, 2000; Manlove, Lazonder, 

& de Jong, 2006) 

Although much has been learned from these approaches, the empirical 

foundations underlying the contents of these support tools often remain hidden to 

the public eye. The work of Quintana et al. (2004) forms a notable exception. They 

argued that more insight into the specific problems students face is called for, and 

accordingly based their scaffolding framework on a descriptive analysis of 

students’ inquiry learning problems. Yet even this well-documented framework 

lacks a specific frame of reference: if anything, there is an implicit reference to 

expert behaviour as yardstick of proficiency.  

This study therefore sought to gain insight into students’ scientific reasoning skill 

deficiencies by contrasting domain novices’ inquiry behaviour and performance to 

that of a considerably more knowledgeable reference group (hereafter: experts). A 

group of students with intermediate levels of prior knowledge was included in this 

comparison to shed more light on the developmental trajectories of students’ 

scientific reasoning and domain knowledge. Before elaborating the design of the 

study, a brief overview of the literature is given in order to contextualize the 

design rationale. This overview starts from classic novice-expert literature and 

results in a descriptive framework of the core scientific reasoning processes. 

 

Theoretical background 

Novice-expert differences have been studied extensively in the field of problem 

solving. This research has identified key characteristics of expert performance, 

some of which were found to be robust and generalizable across domains. In short, 
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problem solving research has shown that people who have developed expertise in 

a certain area mainly excel within that area, perceive large meaningful patterns in 

their domain of expertise, perform fast (even though they spend a great deal of 

time analysing a problem), and have superior short-term and long-term memory. 

Experts also represent a problem in their domain at a deeper, more principled level 

than novices do and have strong self-monitoring skills (Bransford, Brown, & 

Cocking, 2002; Chi, Glaser, & Farr, 1988). 

These general characteristics, although informative, are not specific enough to 

guide instructional designers and science educators in determining what exactly 

their support should focus on. A further complicating issue is that novice-expert 

differences in problem solving do not necessarily generalize to inquiry learning. 

According to Batra and Davis (1992), most problem solving tasks require 

participants to find a unique correct solution. In inquiry learning this search for a 

single optimal outcome (often referred to as an engineering approach) is generally 

considered less effective in facilitating students’ understanding of a domain than a 

so-called science model of experimentation (Schauble, Klopfer, & Raghavan, 1991). 

Performing an inquiry task effectively and efficiently might thus require different 

skills and strategies than proficient problem solving does. As a result, the general 

instructional implications from problem solving research should be substantiated 

by, or supplemented with, insights gleaned from novice-expert differences in 

inquiry learning.  

Inquiry learning attempts to mimic authentic scientific inquiry by engaging 

students in processes of orientation, hypothesis generation, experiment design, and 

data interpretation to reach conclusions (Shrager & Klahr, 1986; Zimmerman, 

2007). While some have argued that the inquiry tasks given to students in schools 

evoke different cognitive processes than the ones employed in real scientific 

research (Chinn & Malhotra, 2002), the advancement of computer technology has 

significantly narrowed this gap. Contemporary electronic learning environments 

offer a platform for students to examine scientific phenomena through computer 

simulations. These environments increasingly provide opportunities for students 

to build computer models of the phenomena they are investigating. As in authentic 

scientific inquiry, modelling is considered an integral part of the inquiry learning 

process. Students can use models to express their understanding of a relation 

between variables (Jackson, Stratford, Krajcik, & Soloway, 1994; White, Shimoda, & 

Frederiksen, 1999); these propositions can be tested by running the model; 

evidence evaluation then occurs by weighting model output against prior 

knowledge or the data from the simulation. These comparisons yield further 

insight into the phenomenon and assist students in generating new hypotheses. 
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The effectiveness and efficiency with which students perform these processes can 

be expected to differ as function of their level of domain expertise. In the present 

research, Klahr and Dunbar’s (1988) SDDS model was used to describe and explain 

these differences. This descriptive framework captures the core scientific reasoning 

processes and is sensitive to students’ evolving domain knowledge. SDDS 

conceives of scientific reasoning as a search in two problem spaces (hence its name: 

Scientific Discovery as Dual Search): the hypothesis space and the experiment 

space. The former space comprises the hypotheses a learner can generate during 

the inquiry process; the latter consists of all possible experiments that can be 

conducted with the equipment at hand. Search in the hypothesis space is guided 

by either prior knowledge or experimental results. Search in the experiment space 

can be guided by the current hypothesis; in case learners do not have a hypothesis 

they can search the experiment space for exploratory experiments that will help 

them formulate new hypotheses. 

According to the SDDS model, inquiry learning consists of three iterative 

processes: hypothesizing, experimenting, and evaluating evidence. The way 

students perform these processes is assumed to depend on their knowledge of the 

task domain. Students with domain expertise can generate hypotheses from prior 

knowledge and then test their hypotheses by conducting experiments (i.e., a 

‘theory-driven’ approach). After experimenting, students can evaluate their 

hypotheses against the cumulative experimental results and prior knowledge. 

Evaluation has three possible outcomes: the current hypothesis can either be 

accepted, rejected, or considered further. Depending on this evaluation the student 

may start a new search for hypotheses, continue investigating the current 

hypothesis (which generally involves some alteration), or end the inquiry. Students 

without domain expertise cannot generate initial hypotheses from prior 

knowledge. They have to search the experiment space for a series of exploratory 

experiments (i.e., a ‘data-driven’ approach). Once performed and evaluated, these 

experiments may help students to formulate an initial hypothesis, which can then 

be tested through experimentation.   

Research has generally confirmed the alleged influence of domain knowledge on 

scientific reasoning. The original study by Klahr and Dunbar (1988) provides 

evidence that prior knowledge reduces time on task and the number of 

experiments conducted. Performance success was independent of prior 

knowledge: all participants succeeded in discovering how an unknown function of 

an electronic device worked. Klahr and Dunbar also identified two distinct 

investigative strategies, a Theorist approach and an Experimenter approach. One 

of the key differences between the two was that Experimenters conduct more 

experiments than Theorists and that this extra experimentation is conducted 

without an explicit hypothesis statement (Klahr & Dunbar, 1988). 
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However, these results could not be replicated under more controlled 

circumstances. Wilhelm and Beishuizen (2003) for instance compared learning 

activities and outcomes across a concrete and abstract inquiry task. These tasks 

were designed so that participants had no prior knowledge of the abstract task and 

ample prior knowledge of the concrete task. Participants were found to perform 

better when their task was embedded in a concrete context. Compared to the 

students in the concrete condition, students in the abstract condition stated fewer 

hypotheses, but performed as many experiments (time on task was not assessed). 

Lazonder, Wilhelm, and Hagemans (2008) replicated these findings in a within-

subject comparison. They too found that participants perform better on a concrete 

task with familiar content. Results also confirmed that participants generate more, 

and more specific hypotheses on the concrete task. The number of experiments was 

again comparable on both tasks. Lazonder et al. (2008) also confirmed the existence 

of two distinct investigative strategies. They argued that as individuals have little 

domain knowledge they are presumed to start off in a data-driven approach, 

meaning that they start experimenting without having formulated specific 

hypotheses, but gradually switch to a more theory-driven mode of 

experimentation. Individuals who do posses domain knowledge, in contrast, 

approach the task by generating and testing specific hypotheses, which is the 

Theorist approach.  

These findings suggest that, although prior knowledge does not reduce the 

number of experiments per se, it does reduce the number of experiments not 

guided by a hypothesis. Students with prior knowledge thus engage in more 

theory-driven experimentation which leads to superior task performance. The 

latter part of this conclusion was corroborated by Lazonder, Wilhelm, and van 

Lieburg (2009), who found that the number of hypotheses stated by participants 

was a strong predictor of performance success. This study further showed that 

students learning by inquiry benefit little from knowledge of the meaning of 

variables per se, but it is the knowledge of the relations of the variables that is of 

pivotal importance.  

In line with the previously mentioned studies, the research reported here 

investigated how prior domain knowledge influences students’ scientific reasoning 

and performance in an inquiry task. In contrast to the previous studies, this study 

was designed as a novice-expert comparison that aimed to replicate and extend 

previous findings under more ecologically valid conditions. Toward this end the 

study utilized a genuine physics task that was situated in a realistic setting, and 

performed with an inquiry learning environment designed for secondary 

education –which stands in marked contrast to the fictitious small-scale inquiry 

tasks used in laboratory studies cited above. Another key difference with prior 

research is that modelling was treated as integral part of the inquiry process. 
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Toward this end the learning environment housed a modelling tool students could 

use to articulate their hypotheses and (acquired) domain knowledge.  

 

Research design and hypotheses 

This study compared scientific reasoning and performance success of low-level 

novices, high-level novices and experts on an inquiry task that involved modelling 

a charging capacitor. Low-level novices had no prior knowledge of the task 

content, but could induce this knowledge by interacting with a computer 

simulation so as to build a model of the capacitor. High-level novices were familiar 

with the physics laws that govern the behaviour of a charging capacitor, whereas 

the experts’ knowledge of capacitors was well beyond the requirements for 

successful task completion. 

In line with previous findings participants’ prior domain knowledge was expected 

to influence their performance success and scientific reasoning. As participants 

could infer all knowledge by interacting with the learning environment, the quality 

of their final models was expected to be comparable and therefore independent of 

prior domain knowledge. However, it was expected that novices would need more 

time to create their models than experts.  

Scientific reasoning was expected to differ as function of participants’ prior domain 

knowledge. Low-level novices, in absence of prior domain knowledge, were 

expected to start off in a data-driven mode of inquiry and gradually shift to a more 

theory-driven approach, resulting in increasingly domain-specific hypotheses. 

High-level novices possessed some prior domain knowledge, and were therefore 

expected to approach the beginning of the task more theory driven than low-level 

novice. Still, high-level novices were expected to show an increase in their 

hypotheses’ domain specificity. Experts on the other hand, were predicted to 

engage in theory-driven experimentation throughout their inquiry, expressing 

highly domain-specific hypotheses. As participants engaging in a data-driven 

approach will conduct more experiments than participants engaging in a theory-

driven approach, a negative relationship was expected between prior domain 

knowledge and the number of conducted experiments.  

Relatively many studies have been conducted investigating learners’ evidence 

evaluation. This kind of research generally focuses on developmental differences 

and reasoning errors people make during evidence evaluation (for an extensive 

overview see Zimmerman, 2000). However, as the influence of prior domain 

knowledge on evidence evaluation has remained unexplored, this study does not 

start from an assumption regarding the process of evaluating evidence, and 

addressed this scientific reasoning process in an explorative way.  
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Method 

Participants 

Thirty-one Dutch students participated in this study. They were selected for their 

levels of prior domain knowledge and classified as either low-level novice, high-

level novice, or expert. Low-level novices (n = 10) were junior high school students 

(aged 14 - 15) who had no prior domain knowledge: as capacitors were not part of 

their curriculum they were unfamiliar with the relevant formulas. However, they 

did have modelling experience, as they had recently attended an 8-hour modelling 

unit in which they built system dynamics models of several phenomena (i.e., 

influenza, fluid dynamics, and greenhouse gasses). High-level novices (n = 10) 

were senior high school students (aged 18 - 20) from the science track with some 

prior domain knowledge (capacitors had been taught in their curriculum and all 

relevant formulas were addressed), and modelling experience. One year prior to 

the experiment they had attended the same modelling unit as the low-level 

novices. Additionally, they had just finished a modelling refreshment course that, 

among other things, involved modelling a capacitor. Experts (n = 11) were 

university students (aged 20 - 27) who had finished their first year in electrical 

engineering. They thus had extensive prior domain knowledge (their curriculum 

involved knowledge about capacitors well beyond the scope of the task), as well as 

ample modelling experience.  

 

Materials 

Participants engaged in an inquiry task in a modified standalone version of the Co-

Lab learning environment (van Joolingen, de Jong, Lazonder, Savelsbergh, & 

Manlove, 2005). The task was to replace parts of the electrical circuit of a speed 

control camera so it would match new specifications. The cover story told 

participants that a modification to speed control cameras (adding a transmitter that 

activates a matrix board) caused too long recharging times of the capacitor in the 

electrical circuit. Participants were told that by replacing the resistor in the 

electrical circuit the recharging times could be influenced. They had to suggest a 

possible resistance value which would lead to smaller capacitor recharging times.  

In order to tackle the problem, participants first had to investigate how resistance 

affects the time to charge a capacitor. The behaviour of a charging capacitor could 

be studied by running experiments with a simulation (see Figure 2.1). The 

simulation represented an electrical circuit containing a power source, a resistor, a 

device that activates a matrix board (which has resistance), and a capacitor. 

Experiments could be conducted with this electrical circuit to examine the 

influence of the resistance on the charging of the capacitor. In the simulation the  
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Figure 2.1. Screen capture of the simulation (left pane) and model editor tool (right pane). Pressing the 

start button in the simulation started an animation of moving green dots representing current, a flow of 

charge over time (see Equation 1). The charging of the capacitor was visualized by green dots piling up 

on the top plate of the capacitor. The model editor shows the reference model students had to build 

from their prior knowledge and/or insights gained through experimenting with the simulation.  

 

resistor value could be manipulated (five possible values), which changed the 

current in the circuit. Simulation output of all variables could be inspected through 

a table and graph. 

Participants could infer knowledge by interacting with the learning environment. 

Four knowledge components about electrical circuits can be distinguished: Ohms 

Law, Kirchhoff’s law (including its two rules: the junction rule, and the loop rule), 

and the behaviour of capacitors. Students who are unfamiliar in the domain can 

generate this knowledge by conducting experiments with the simulation. For 

instance, from viewing the animation students can grasp the notion that a capacitor 

is a device where charge is stored (hence the animation was designed including a 

“peeled off” capacitor, so students could see a potential difference arising across 

the plates). Furthermore, the knowledge components could be inferred through 

(systematic) inspection of the results generated from these experiments (in a graph 

or table). For instance, students can plot the potential difference across the 

capacitor during charging in a graph. From inspection of this graph it can be 

hypothesized that as the potential difference across the capacitor increases, the 

charging speed decreases. Therefore, the increase in potential difference across the 

capacitor should be dependent (among other things) on the potential difference 

across the capacitor itself. Such reasoning concerns knowledge about the behaviour 

of capacitors and the loop rule.   

The model editor (see Figure 2.1) enabled participants to build and test a model 

that represents their conceptions of the charging behaviour. (A reference voltage of 

0 Volts at the negative battery pole was assumed so that absolute voltages could be 
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used in the model.) The syntax of this system dynamics model makes use of 

‘stocks’, ‘auxiliaries’, ‘constants’, ‘flows’ and ‘relations arrows’. A model consists of 

several components: basic elements (i.e., elements that represent the model ‘input’: 

constants and stocks), auxiliary elements (i.e., elements that specify the integration 

of elements) and connecting arrows. An example looks like this: A basic element 

that changes over time and has an initial value (Charge) is represented in a stock. 

Connected to a stock are flows, indicating the changes in the stock. These changes 

are specified from the basic elements that remain constant (i.e., constants) (e.g., 

capacitance (C), power source (S), resistance (R1 and R2)) and auxiliary elements 

(i.e., auxiliaries) (e.g., potential difference across the capacitor (Vc), potential 

difference across the resistances (Vr), current (I), resistance total (R)) which are 

connected by relation arrows. 

As explained in van Joolingen et al. (2005), participants could build their initial 

model early on by selecting pre-specified, qualitative relations from a drop-down 

menu (not shown in Figure 2.1). During the later stages, when participants’ 

knowledge of the capacitor had increased, qualitative relations could gradually be 

replaced by quantitative ones using scientific formulas. Thus participants could 

use their models to express propositions about a relation between variables. Hence, 

students’ modifications to a model were considered hypotheses that could be 

tested by running the model and analyzing its output through the table and graph. 

These tools further allowed students to compare model and simulation output in a 

single window.  

The Co-Lab learning environment stored participants’ actions in a log file; 

Camtasia Studio ("Camtasia Studio", 2003) was used to record participants’ actions 

and verbalizations in real time. 

 

Procedure 

Students participated in the experiment one at a time. As experts had no prior 

experience with the syntax of the modelling tool, they completed a brief tutorial 

prior to the assignment. All other instructions and procedures were identical for 

the three groups of participants.  

At the beginning of a session, the experimenter explained the experimental 

procedures. Participants were then presented with the cover story that introduced 

them to the inquiry task. Next, the experimenter demonstrated the procedural 

operation of the simulation, the model editor, and the graph and table tool. During 

this demonstration, the experimenter handed out a paper instruction manual on 

the modelling syntax participants could consult at any time during the task. All 

participants were familiar with this manual: both novices groups used it during 
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their modelling unit and the experts studied the manual during their modelling 

tutorial prior to the assignment. 

Participants were asked to think aloud during the task. Thinking aloud was 

practiced on a simple task (tying a bowline knot). After this final instruction, 

participants received the problem statement and started their inquiry. They had 1.5 

hours maximum to complete the task.  

During task performance the experimenter prompted the participants to think 

aloud when necessary. Thinking aloud was further encouraged by asking 

participants to state their hypotheses upon running the simulation and to verbalize 

their evaluation of evidence upon inspecting experimental results in the table or a 

graph. Towards this end the experimenter used non-directive probes to elicit the 

factor under investigation (“What are you going to investigate?”) and its alleged 

effect on the output variable (“What do you think will be the outcome?”) that have 

been shown to have no disruptive influence on participants’ inquiry learning 

processes (Wilhelm & Beishuizen, 2004).  

 

Coding and scoring 

Variables under investigation in the study were time on task, performance success, 

and the three scientific reasoning processes of hypothesising, experimentation, and 

evidence evaluation. Time on task was assessed from the log-files. Performance 

success was scored from the participants’ final models. Both a model content and a 

model structure score were calculated. The model content score represented 

participants’ understanding of the four distinct knowledge components about 

electrical circuits within the task (i.e., Ohms Law:  I = V/R, resistances connected in 

parallel: 1/Rt = 1/R1 + 1/R2, the potential difference in the circuit depends on the 

power source and the potential difference across the capacitor: ΔV = Vs - Vc, and 

the relationship between the potential difference across the capacitor and the 

amount of charge that gathers on the capacitor: C = Q/Vc). In a correct, fully 

specified model these components are correctly integrated and meet Equation 1. 

One point was awarded for each correctly specified component, leading to a four-

point maximum score. Two raters scored the models of three randomly selected 

 



Finding out how they find it out 

21 

low-level novices, three randomly selected high-level novices and three randomly 

selected experts. Inter-rater reliability estimate was 1.0 (Cohen’s κ). 

 

(dQ/dt) =  (Vs- Q/C) * (1/R1 + 1/R2)    (1)2 

 

The model structure score was scored in accordance with Manlove et al.’s (2006) 

model coding rubric. This score represented the number of correctly specified 

variables and relations in the models. “Correct” was judged from the reference 

model shown in Figure 2.1. One point was awarded for each correctly named 

variable; an additional point was given if that variable was of the correct type. 

Concerning relations, one point was awarded for each correct link between two 

variables and one point was awarded for the direction. The maximum model 

structure score was 38. Two raters coded the models of three randomly selected 

low-level novices, three randomly selected high-level novices and three randomly 

selected experts. Inter-rater reliability estimates were .74 (variables) and .92 

(relations) (Cohen’s κ). 

Participants’ simulation hypotheses concerned statements about variables and 

relations accompanying simulation runs, and were assessed from the think-aloud 

protocols. Each hypothesis was classified according to the level of domain 

specificity using a hierarchical rubric consisting of fully-specified, partially-

specified, and unspecified hypotheses (as did Lazonder et al., 2009). A fully-

specified hypothesis comprised a prediction of the direction and magnitude of the 

effect (“I think a 10 times larger resistance will extend the capacitors’ recharging 

period by 10”). Partially-specified hypotheses predicted the direction of effect (“I 

think increasing the resistance will increase the capacitors’ recharging period”). 

Unspecified hypotheses merely denoted the existence of an effect (“I think the 

resistance influences the capacitors’ recharging period”). Statements of ignorance 

or experimentation plans (“I’ll just see what happens”) were not considered 

hypotheses. Two raters coded the simulation hypotheses of three randomly 

selected low-level novices, three randomly selected high-level novices, and three 

randomly selected experts (in total 74 hypotheses). Inter-rater agreement was .77 

(Cohen’s κ). 

In accordance with van Joolingen et al. (2005), model changes were also considered 

hypotheses. A model hypothesis was operationally defined as the changes in a 

                                                 
2 Equation 1 can also be written as dQ/dt = (V/R) exp[-t/RC], with R being the total 

resistance of the parallel resistors. The formula used here was preferred because it 

is consistent with the system dynamics formalism. 
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participant’s model between subsequent runs. Model hypotheses were coded 

based on the same hierarchical rubric as simulation hypotheses. Any change to a 

quantitatively specified relationship between two elements in the model was 

coded as fully-specified hypothesis. Changes in qualitative relationships were 

coded as partially-specified hypothesis, and changes to relation arrows not 

accompanied by a qualitative or quantitative specification was coded as 

unspecified hypothesis. Two raters coded the models of three randomly selected 

low-level novices, three randomly selected high-level novices and three randomly 

selected experts (in total 145 models). Inter-rater agreement was .85 (Cohen’s κ). 

The number of conducted experiments with the simulation and the number of 

model runs were retrieved from the log files. Every time participants clicked the 

‘Start’ button in the simulation window was considered a simulation experiment. 

Experiments that were not accompanied by a hypothesis were considered 

exploratory experiments. Simulation experiments were further classified as unique 

or duplicated depending on whether the experiment had been previously run with 

the same resistance value. As the learning environment enabled participants to 

choose from 5 different resistance values, a maximum of 5 unique experiments 

could be conducted. Every time participants clicked the ‘Start’ button in the model 

editor was considered a model run. If the model had been conceptually altered 

since the previous run, this run was considered an experiment.  

The results of participants’ evidence evaluation was assessed from the progression of 

participants’ models during their session. This evaluation of evidence process was 

coded based on participants’ subsequent models. Based on cumulative evidence 

resulting from experimenting (and prior knowledge) participants could decide to 

(temporarily) accept, reject, or alter their current hypothesis (contrary to Klahr and 

Dunbar’s (1988) study, further consideration of the current hypothesis with 

different experiments is conceptually not possible when a model is considered an 

hypothesis). Modifications to the previous version of the model were considered 

‘alterations’, except when these modifications were deletions or additions that 

were not related to the previous hypothesis. Deletions of elements in prior models 

were considered ‘rejections’, as they reject the hypothesis in the prior model 

specified by this element. Additions of elements in models signalled ‘acceptations’, 

as the prior model was (temporarily) accepted as it was, and now a new hypothesis 

is considered by addition of this new element. 
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Results 

Both groups of novices needed more than 80 minutes to complete the task (low 

level novices: M = 81.80, SD = 11.39; high-level novices: M = 81.30, SD = 19.61); 

experts took about 20 minutes less time (M = 63.36, SD = 22.12). Univariate analysis 

of variance (ANOVA) showed this difference to be statistically significant, F(2,28) = 

3.45, p = .050. Planned contrasts indicated that experts needed less time on task 

than novices, t(28) = -18.19, p <.001, whereas the high-level novices and low-level 

novices needed as much time to complete the task, t(28) = -.50, p = .310.  

Table 2.1 presents a summary of participants’ performance. Performance success 

was assessed from participants’ final models. Multivariate analysis of variance 

(MANOVA) showed that the quality of the participants’ models differed as 

function of their prior knowledge, F(4,56) = 9.50, p < .001. Subsequent univariate 

ANOVA’s indicated that prior knowledge influenced both model content, F(2,28) = 

59.11, p < .001, and model structure score, F(2,28) = 8.28, p = .001. Planned contrasts 

revealed that experts achieved significantly higher model content, t(28) = 3.09, p 

<.001, and model structure scores, t(28) = 9.05, p = .001, than novices. The 

comparison among both groups of novices showed that high-level novices had 

higher model content scores than low-level novices, t(28) = 1.10, p = .004. However, 

the model structure score indicated no significant difference between both novice 

groups, t(28) = 3.30, p = .244.  

From Table 2.1 it can be seen that participants differed in the number of 

hypotheses they generated. Although MANOVA with the number of simulation 

and model hypotheses as dependent variables did not reach significance, F(4,56)= 

2.01, p = .105, the large standard deviations indicate a considerable variation in 

scores. Therefore, the content of these hypotheses was analysed using the 

percentages of all stated hypotheses as measure.  

As few participants (4 low-level novices, 3 high-level novices, and 7 experts) stated 

hypotheses with both the simulation and the models, data were analysed with 

non-parametric Kruskal-Wallis’ ranks tests. Results indicated that the groups 

neither differed in mean model hypothesis’ specificity, χ2(2, N = 20) = 5.59, p = .061, 

nor on their mean simulation hypothesis specificity, χ2(2, N = 20) = .72, p = .699.  
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Table 2.1 

Summary of participants’ performance 

 Low-level 

novices 

High-level 

novices 

Experts 

 

M SD M SD M SD 

Performance success       

Model contenta 0.00 0.00 1.10 1.20 3.64 0.67 

Model structureb 13.30 5.74 16.60 6.40 24.00 6.40 

       

Hypothesizing       

Simulation hypotheses 2.10 2.73 3.70 4.35 2.10 1.70 

Model hypotheses 6.00 5.42 1.30 2.11 5.91 5.49 

Domain specificity simulation hypotheses 1.80 0.57 1.84 0.24 1.89 0.37 

Domain specificity model hypotheses 2.10 0.65 2.75 0.50 2.58 0.54 

       

Experimenting       

Unique simulation experiments 1.80 1.87 2.50 1.90 2.45 1.21 

Duplicated simulation experiments  2.60 3.69 4.90 5.92 1.91 1.64 

Exploratory simulation experiments (%) 58.06 36.52 58.69 31.19 55.52 32.97 

Model experiments 7.11 4.60 3.50 3.02 4.91 3.83 

Exploratory model experiments (%) 10.89 22.99 7.87 12.22 0.00 0.00 

       

Evaluating evidence       

Accepted hypotheses (%) 32.18 15.60 37.50 47.87 29.00 22.42 

Reject hypotheses (%) 20.96 14.95 4.17 8.33 5.18 8.38 

Altered hypotheses (%) 46.86 21.18 58.33 50.00 65.82 23.18 
a Maximum score = 4. b Maximum score = 38 

 

Figure 2.2 depicts the specificity of participants’ hypotheses through time (as time 

on task differed between groups, it was standardized using quartiles). An increase 

in domain specificity was expected for both novice groups, whereas experts were 

expected to generate highly domain specific hypotheses throughout the task. 

Contrary to expectations however, the mean domain specificity of participants’ 

hypotheses remained relatively stable through time. One noticeable finding is that 

low-level novices had substantially more domain specific simulation hypotheses in 

the fourth quartile. Yet the domain specificity of their model hypotheses failed to 

follow this trend.  
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Figure 2.2. Mean specificity of participants’ hypotheses accompanying simulation experiments (left 

pane) and model experiments (right pane) over time and by group. 

 

Participants could experiment either by running the simulation or their models. 

MANOVA with the number of unique and duplicated simulation experiments as 

dependent variables produced no significant differences, F(4,56) = 1.63, p = .179. 

ANOVA of the number of model experiments was not significant either, F(2,23) = 

1.61, p = .218, and nor was the percentage of these experiments that was 

exploratory (simulation experiments: F(2,28) = 0.62, p = .545; model experiments: 

F(2,23) = 1.25, p = . 305). These results indicate that participants with varying levels 

of prior knowledge performed as many experiments, and used these experiments 

as often to test hypotheses.  

Participants could perform these experiments during the task as they deemed 

necessary, resulting in large inter-individual differences in experimenting 

behaviour over time. Figure 2.3 depicts the spread of the number of experiments 

conducted with the simulation and the models over time (as with hypotheses, time 

was divided in quartiles). As can be seen, in general the number of experiments 

with the simulation decreased over time, whereas the number of experiments with 

the models tended to increase. There was also a decline in the number of 

participants who experimented with the simulation. Even though an initial 

knowledge base could be acquired by experimenting with the simulation, seven 

low-level novices chose not to experiment with the simulation in the first quartile. 

Actually, three low-level novices did not experiment with the simulation at all. 

Even more participants did not make use of the modelling tool to experiment with, 

one low-level novice and four high-level novices never executed one of their own 

models. 
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Figure 2.3.  Mean number of experiments conducted with the simulation (left pane) and with the model 

(right pane) over time and by group. 

 

For subsequent models, results of participants’ evidence evaluating processes were 

analysed in light of the number of hypotheses. Therefore comparable to 

hypotheses’ data, these data were also converted to percentages and analysed with 

non-parametric Kruskal-Wallis’ ranks test. From Table 2.1 it can be seen that 

groups did not differ in percentage of evidence evaluation resulting in accepting, 

χ2 (2, N = 20) = 0.10, p = .951, and alteration, χ2 (2, N = 20) = 2.61, p = .271. However, 

prior knowledge affected the percentage of evidence evaluation processes resulting 

in rejection, χ2 (2, N = 20) = 6.72, p = .035. Low-level novices rejected more model 

hypotheses than high-level novices and experts.  

 

Qualitative analyses 

From these statistical analyses it appears that novices predominantly followed the 

same approach as experts. Performance success scores suggest that this approach 

suited experts better than novices. Qualitative analyses of participants’ modelling 

activities were performed to reveal why novices’ behaviour was less effective.  

When looking at participants’ initial models (i.e., the first model they tried to run), 

it appeared that participants with domain knowledge were only a fraction better at 

deciding which components to include in their model. Experts’ initial models 

contained nearly all basic elements from the target model (i.e., 1 stock and 4 

constants) (M = 4.45, Range = 3-5), indicating that they could oversee the entire 

problem and correctly identified the relevant pieces of information from the 

problem statement. Novices included as many elements in their first model (low-

level novices: M = 4.33, Range = 2-6; high-level novices: M = 4.00, Range = 3-5). 

However, low-level novices’ initial models contained a few erroneous elements 

such as ‘loading time’ and ‘switch’ (M = 0.89, Range = 0-2), whereas high-level 
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novices and experts’ models had no such elements. The low-level novices’ final 

models contained a comparable number of incorrect elements (M = 1.22, Range = 0-

4). 

Although low-level novices had a pretty good sense of which elements to include 

in their initial models, they were probably ignorant of the relationships between 

model elements. The modelling tool in Co-Lab anticipated this by offering 

participants the possibility to specify relationships qualitatively. Participants could 

thus specify relationships before they fully grasped the mathematical formula 

governing the relation between two variables. Surprisingly however, only two 

low-level novices and one expert made use of this feature. While this may seem a 

defendable choice for the experts and high-level novices, it may not be a wise 

decision for the low-level novices. Yet they generally ignored, and sometimes even 

deliberately rejected qualitative modelling by saying that it produced a less specific 

model that would not help them to discover the capacitor’s behaviour.  

These findings support the idea that low-level novices tried to build their models 

in an expert manner. But due to their lack of prior knowledge, low-level novices 

could only base their modelling efforts on insights gained through 

experimentation, or engage in trial and error activities. Therefore, participants’ 

think-aloud protocols were analysed to reveal the reasoning behind subsequent 

model changes (i.e., model hypotheses). Results indicated that low-level novices 

hardly reasoned at all. Nine low-level novices utilized the modelling tool to 

experiment with their models, eight of them also experimented with adjusted 

models. These eight low-level novices did not motivate 87% of the changes they 

made to their models at all. The changes to models that were guided by reasoning 

could be considered ‘data-driven’; this is illustrated in Excerpt 1. 

 

Excerpt 1 (low-level novice)  

“They [the resistances] ought to be 4.4 Volts. 

[Participant inspects model output in the table] 

Hmmz, 410 kilo Ohm, so with every kilo Ohm there will be approximately 0.1 Volts resisted. 

Thus this resistance resists 3 Volts and the other 1.1 Volts.  

 

The experts, in contrast, relied heavily on their prior knowledge for their model 

changes. Eight experts performed more than one model experiment, and 83% of 

their model changes were motivated from prior knowledge; a typical example is 

shown in Excerpt 2. Of the remaining model changes, 12% was ‘data-driven’, often 

involving statements about previous model runs, 2% was based on logical 

reasoning, and 3% was not motivated.  
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Excerpt 2 (expert) 

“Now I have the, ehm, source power I’ve got let’s say to the…the source power is influenced 

by the resistances, from that I’ve made this current. That is the current behind the parallel 

resistances. As that is necessary to charge the capacitor. The formula to charge the capacitor 

is: the value of the capacitor times the current time derivative. So now I’m going, ehm, then 

you have the current over there…” 

 

Only four high-level novices performed more than one model experiment. In the 

think-aloud protocols of the four high-level novices who found subsequent 

experimenting worthwhile, 89% percent of the changes made to the model were 

motivated. This reasoning was based on prior domain knowledge (28%), data from 

prior experiments (33%), information found in the assignment (28%; see Excerpt 3), 

or logical reasoning (11%). 

 

Excerpt 3 (high-level novice)  

“With these [the arrows connecting elements in the model] I want to indicate that there is a 

charge directly towards the capacitor…and that it goes through the sender or the resistance 

let’s say…and then again through the capacitor, like in that circuit [the circuit depicted in the 

assignment paper].” 

 

Discussion 

The aim of this study was to reveal domain novices’ need for support by 

comparing their scientific reasoning and performance success to that of students 

with higher levels of domain knowledge. The experts’ task performance served as 

standard against which the scientific reasoning and knowledge acquisition of low-

level novices and high-level novices were compared. The first comparison in 

particular elucidates the issues support for students without prior domain 

knowledge should address. The discussion concludes with implications for the 

design of such support. 

Consistent with problem-solving research, the experts required less time for task 

completion than both groups of novices. Other findings suggest that these time 

differences were attributable to the experts’ rich knowledge base. That is, experts 

needed only a few simulation experiments to create comprehensive initial models 

that generally contained all basic elements from the target model. Their model runs 

were always intended to test a hypothesis, and nearly all changes to the model 

were motivated from prior knowledge.  
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Low-level novices were predicted to perform these scientific reasoning processes in 

a different way. Contrary to expectations, however, their hypothesizing and 

experimenting did not differ from that of experts. Although the latter result is 

consistent with previous laboratory studies (Lazonder et al., 2008; Lazonder et al., 

2009; Wilhelm & Beishuizen, 2003), the higher proportion of exploratory 

experiments found in these studies could not be confirmed. Together these 

findings suggest that low-level novices based their rather specific hypotheses on 

mere guesswork. The qualitative analyses bore this out: most low-level novices did 

not engage in qualitative modelling, and very few of the changes to their models 

(i.e., model hypotheses) were guided by reasoning. Therefore, many of these 

hypotheses inevitably were incorrect and should be rejected. This is indeed what 

appears to have happened since low-level novices rejected a larger proportion of 

their model hypotheses than experts did.  

Performance success scores reflect to what extent participants’ scientific reasoning 

was effective. Based on Klahr and Dunbar (1988), performance success was 

assumed to be independent of participants’ prior knowledge because, contrary to 

most problem solving tasks, low prior knowledge participants could infer all 

knowledge by interacting with the learning environment. Results indicate that they 

did not: the quality of the experts’ models was higher compared to that of the high-

level novices’ models, whereas high-level novices built better models than low-

level novices. A closer look at these results shows that the experts achieved an 

almost perfect model content score; a few minor inaccuracies caused that not every 

expert produced a fully correct model. Low-level novices, in contrast, had rather 

low performance success scores. The magnitude of their model content scores 

indicates that they did not acquire complete understanding of any of the four 

formulas that governed the behaviour of the charging capacitor. Although the 

learning environment provided them with all necessary tools to induce this 

knowledge, low-level novices did not succeed in doing so –which suggests that 

their scientific reasoning was rather ineffective.  

From these findings it can be concluded that low-level novices predominantly 

exhibit expert-like behaviour during an unsupported inquiry task, and that this 

approach apparently does not suit them that well. This conclusion is consistent 

with the findings of Lazonder et al. (2008). Their within-subject comparison 

revealed that students generally adopt a similar approach to inquiry tasks in 

familiar and unfamiliar domains, but perform better on tasks they possess prior 

knowledge of. Therefore, it can be concluded that the current results complement 

existing evidence on the influence of prior knowledge on inquiry behaviour. 

Findings from prior laboratory studies in which prior knowledge was manipulated 

by differences in task design, can now be generalized to more ecologically valid 

classroom situations.  
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This study added an intermediate group (i.e., high-level novices) to the novice-

expert comparison. Insight into high-level novices’ inquiry behaviour and 

difficulties is of interest for the design of support because low-level novices will 

probably encounter the same problems once they have gained some knowledge of 

the topic they are investigating. As high-level novices’ prior knowledge was higher 

than the low-level novices’ and lower than the experts’, they were expected to 

perform better than the low-level novices, though possibly not as good as experts. 

Contrary to expectations, however, their hypothesizing and experimenting neither 

differed from that of experts, nor from that of low-level novices. The qualitative 

analyses suggest that this expert-like behaviour suits the high-level novices as 

there appeared to be sound reasoning behind the high-level novices’ highly 

specific hypotheses. Consequently, most of their experiments resulted in either 

acceptation or alteration of the hypotheses, which was comparable to experts’ 

evidence evaluation results.   

The high-level novices’ performance success scores were higher than low-level 

novices’. Yet these scores were still fairly low, considering that the high-level 

novices were familiar with all relevant domain knowledge. It appears that, despite 

their prior knowledge, performance on this task was difficult for the high-level 

novices, suggesting that they were unable to effectively apply their knowledge. 

These findings lead to the conclusion that learners who are somewhat familiar in 

the domain also need support in order to help them manage their knowledge to 

effectively perform an inquiry task. 

However, there was one slightly a-typical finding. Several high-level novices were 

found not to perform any model experiment. This could be a result of the task 

difficulty. If high-level novices had difficulty expressing their knowledge in a 

model during the task, they probably did have enough domain knowledge to 

realize that the model was not good enough yet. As such, it would make sense not 

to run that model as they knew it to be incorrect. Future research might give more 

insight on this problem and how it can be overcome.  

These conclusions lead to implications for support. Bearing in mind that what 

constitutes effective and efficient inquiry behaviour is dependent on domain 

knowledge, it can be argued that novices’ (having no prior knowledge) 

unsupported inquiry behaviour was not effective on this task, but could be 

effective if they were familiar in the domain and would apply and expand this 

knowledge through iterative cycles of model testing. Conclusions for support for 

inquiry learning can therefore go into two directions, either providing domain 

support in order to increase the effectiveness of their students’ natural inquiry 

behaviour, or process support to better attune students’ inquiry behaviour to their 
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level of domain knowledge. These two directions correspond with what Quintana 

et al. (2004) called content support and process support respectively.          

In a literature review, de Jong and van Joolingen (1998) conclude that providing 

direct access to domain information seems effective as long as the information is 

presented concurrently with the simulation, so that the information is available at 

the appropriate moment. Lazonder, Hagemans, and de Jong (2010) found that 

offering domain support before and during the task is even more effective. 

Students who received domain information before and during the task not only 

inferred more knowledge from their investigations, but also exhibited more 

sophisticated scientific reasoning. This confirms the notion that providing domain 

knowledge to students is an effective type of support. However, as our low-level 

novices already exhibited quite sophisticated scientific reasoning, while still being 

rather unsuccessful on the task, providing domain knowledge appears not to be 

the most appropriate type of support. Moreover, as Lazonder et al. (2010) also 

mention, providing domain knowledge is somewhat at odds with the concept of 

inquiry learning, where learners have to discover domain knowledge themselves.  

Therefore, it seems more appropriate to support students’ inquiry behaviour by 

better attuning students’ inquiry behaviour to their level of domain knowledge. 

Directions for such process support can be derived from this study’s results. The 

bottleneck for novice learners was found not to be the identification of relevant 

elements, as it was the inquiry of the nature of the relationship between these 

elements that caused problems. Novice learners knew quite well which elements to 

include in the model (even their initial model contained nearly all correct elements 

and few erroneous elements). However, novice learners attempted to infer the 

relationships between those elements by means of testing hypotheses that were 

very specific in nature. Moreover, novices most likely based these hypotheses on 

guesswork, as there was hardly any underlying reasoning. As such inferring the 

correct relationships becomes very difficult and it is no surprise that they hardly 

succeeded in inferring these relationships.  

The modelling tool in the learning environment aims to support learners’ 

hypotheses construction in a graphical way (van Joolingen et al., 2005). Learners in 

this study were given a choice as to how detailed they wanted to specify 

relationships. They could opt for a self-generated, full-fletched scientific formula 

(i.e., quantitative relations), or select less detailed pre-specified, qualitative 

relations from a drop-down menu (i.e., qualitative relations). Qualitatively 

specified relations are more appropriate at the beginning of the modelling process 

when learners do not yet have a clear idea about the model they are making 

(Löhner, van Joolingen, & Savelsbergh, 2003; Sins, Savelsbergh, & van Joolingen, 

2005). Therefore it is surprising that in the present study, where participants did 
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not receive any kind of support, only 2 low-level novices made use of the 

possibility to state qualitative relations.  

In view of these findings it might be fruitful to restrain domain novices’ natural 

tendency to engage in quantitative modelling from scratch by first having them 

create models that are qualitatively specified, and then enabling them to transfer 

these qualitative relations into quantitative ones. This type of support is in line 

with the model progression approach described by White and Frederiksen (1990). 

Model progression was found to lead to higher performance (Rieber & Parmley, 

1995; Swaak, van Joolingen, & de Jong, 1998). However, these authors interpret 

model progression as a type of support where the model at first is not offered in its 

full complexity, but variables are gradually introduced (or, in terms of White and 

Frederiksen (1990), a model progression where the degree of elaboration of a 

model is increased). Our proposed support, as suggested by Gobert and Clement 

(1999), can be considered a more fine-grained kind of model progression, where 

the specificity of the models is increased. This kind of model progression resembles 

what White and Frederiksen (1990) call model progression where the order of a 

model is increased.  

To conclude, we propose to support learners on an inquiry learning task with 

model progression, where the model is progressed in specificity. In line with the 

coding of the model hypotheses, three increasingly specific stages of modelling can 

be identified: a stage in which relationships between elements are unspecified, a 

stage in which relationships between elements are specified qualitatively, and a 

stage in which these relationships are specified quantitatively. In the first stage of 

model progression, students investigate a phenomenon (e.g., an electrical circuit 

containing a capacitor) and have to make a model structure of that phenomenon 

without having to specify the relationships in the model. In the second stage, 

students continue to investigate the phenomenon in order to specify the 

relationships in their model qualitatively. In the third stage, students finalize their 

investigation of the phenomenon by replacing the qualitatively specified 

relationships with quantitatively specified relationships.  

One important condition for this form of model progression to be effective is that 

students should have enough opportunity to build and test hypotheses. The 

simulation that was used in the present study might not satisfy this requirement: 

although output of all elements in the simulation interface could be inspected in 

the table or graph, only one element (the resistor) could be manipulated. Allowing 

students to change the values of the other elements as well extends the possibilities 

for students to validate the hypotheses they generate from interacting with the 

simulation and running their own model. Model progression could then be an 
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effective way to support students’ inquiry and modelling process. Validating this 

assumption in science classrooms is an important topic for future research.  
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Chapter 3 

 

Comparing two types of model progression in 

an inquiry learning environment with 

modelling facilities1 
 

Abstract 

The educational advantages of inquiry learning environments that incorporate 

modelling facilities are often challenged by students’ poor inquiry skills. This 

study examined two types of model progression as means to compensate for these 

skill deficiencies. Model order progression (MOP), the predicted optimal variant, 

gradually increases the specificity of the relations between variables, whereas 

model elaboration progression (MEP) gradually expands the number of variables 

in the task. The study utilized a between-subject design with three conditions: a 

MOP condition (n = 28), a MEP condition (n = 26), and a control condition without 

model progression (n = 30). Consistent with expectations, model progression 

enhanced students’ task performance; a comparison among the two model 

progression conditions confirmed the predicted superiority of the MOP condition. 

These results are discussed in relation to the inconsistent findings from prior 

research, and ways to optimize model order progression are advanced.  

                                                 
1Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2011). Comparing two types of model 

progression in an inquiry learning environment with modelling facilities. Learning and 

Instruction, 21, 614-624. doi: 10.1016/j.learninstruc.2011.01.003 (with modifications). 
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Introduction 

Computer-supported inquiry learning environments essentially enable students to 

learn science by doing science, offering resources to develop a deep understanding 

of a domain by engaging in scientific reasoning processes such as hypothesis 

generation, experimentation, and evaluating evidence. Computer simulations have 

long been incorporated in these environments, and are today increasingly being 

supplemented with opportunities for students to build computer models of the 

phenomena they are investigating via the simulation. As in authentic scientific 

inquiry, modelling is considered an integral part of the inquiry learning process as 

students can build models to express their understanding of the relation between 

variables (van Joolingen, de Jong, Lazonder, Savelsbergh, & Manlove, 2005; White, 

Shimoda, & Frederiksen, 1999). Students can check their understanding by running 

the model; evaluating evidence then occurs by weighting model output against 

prior knowledge or the data from the simulation. These comparisons yield further 

insight into the phenomenon and assist students in generating new hypotheses. 

The educational advantages of inquiry learning are often challenged by the 

students’ poor inquiry skills. De Jong and van Joolingen’s (1998) review showed 

that many students experience difficulties during simulation-based inquiry 

learning. For example, students are unable to infer hypotheses from data, design 

inconclusive experiments, show inefficient experimentation behaviour, and ignore 

incompatible data. Students also experience difficulties during modelling. Hogan 

and Thomas (2001) noticed that students often fail to engage in dynamic iterations 

between examining output and revising models, and merely use output at the end 

of a session to check if the model’s behaviour matches their expectations. A related 

problem concerns the students’ lack of persistence in debugging their model to 

fine-tune its behaviour (Stratford, Krajcik, & Soloway, 1998).  

These findings suggest that students’ difficulties with inquiry and modelling both 

lie at a conceptual level. When provided with a simulation, most students manage 

to design and execute experiments; inferring knowledge from these experiments 

appears to be the major source of difficulty. Likewise, students are capable of 

building syntactically correct models, but often fail to relate knowledge about 

phenomena to those models (Sins, Savelsbergh, & van Joolingen, 2005). As this 

ineffective behaviour is a serious obstacle to learning, additional support is needed 

in order for inquiry learning and modelling to be effective. 

Mulder, Lazonder, and de Jong (2010) were among the first to identify guidelines 

for supporting learners during inquiry learning with modelling. Their study 

compared domain novices’ unsupported inquiry behaviour and performance to 

that of a considerably more knowledgeable reference group (referred to as 
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‘experts’). Using Klahr and Dunbar’s (1988) SDDS model as framework, the 

analyses focused on the processes of hypothesis generation, experimentation, and 

evaluating evidence. Results indicated that novices and experts were quite 

comparable with regard to these processes, suggesting that novices predominantly 

exhibited expert-like behaviour. However, as the novices received no support 

whatsoever, they induced virtually no knowledge from their inquiry and 

modelling activities (as also indicated by Dean & Kuhn, 2007; Klahr & Nigam, 

2004; Mayer, 2004). Subsequent qualitative analyses provided starting points for 

the design of learner support. Contrary to expectations, novice learners knew quite 

well which elements to include in their models, and even their initial models 

contained nearly all correct elements. Generating the relationships between those 

elements appeared to be considerably more problematic. Novices generated and 

tested hypotheses about relations that were so specific that it is highly unlikely that 

these hypotheses originated from their inquiry or modelling activities, suggesting 

that they were merely based on guesswork. From these findings, Mulder et al. 

(2010) concluded that learner support should assist students in identifying the 

relations between the elements in their models.  

Some learning environments such as Co-Lab (van Joolingen et al., 2005), LinkIt 

(Ogborn, 1998) and Model-it (Krajcik et al. Blumenfeld, Markx, Bass, Fredericks, 

and Soloway, 2000) already offer this support in a rather unobtrusive way by 

giving learners a choice as to how detailed they want to specify relationships. 

Learners can opt for a self-generated, full-fledged scientific formula (i.e., 

quantitative relations), or select less detailed pre-specified, qualitative relations 

from a drop-down menu (i.e., qualitative relations). According to Löhner, van 

Joolingen, and Savelsbergh (2003) such qualitatively specified models are more 

appropriate at the beginning of the modelling process when learners do not yet 

have a clear idea about the model they are making. It is therefore surprising that 

participants in the Mulder et al. (2010) study, who received no support, hardly 

used the possibility to state qualitative relations.  

In view of these findings, it might be more fruitful to restrain domain novices’ 

natural tendency to engage in quantitative modelling from scratch by first having 

them create models that are qualitatively specified, and then enabling them to 

transfer these qualitative relations into quantitative ones. This form of model 

progression is generally assumed to be beneficial to novice learners (de Jong, 2005; 

White & Frederiksen, 1990). The goal of the present study was to empirically assess 

the effectiveness of this type of scaffolding. 
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Theoretical and empirical background 

The idea of model progression was coined by White and Frederiksen (1990) who 

used it to create problem sets that motivate successive refinements to the students’ 

mental models. They distinguished three dimensions on which models may vary: 

their perspective, their degree of elaboration, and their order. Lateral progressions 

that represent alternative means of understanding the domain involve changes in 

model perspective. In the domain of electrical circuits, for instance, models 

describing Kirchhoff’s Voltage Law use a different perspective from models 

describing Coulomb’s Law. Upward progressions to more sophisticated models 

involve changes in a model’s degree of elaboration and order. The degree of 

elaboration is determined by the number of variables and relations in a model. The 

core idea of model elaboration progression is therefore to let students start off with 

a simplified version of the phenomena; additional variables (and their relations) 

are introduced step by step over the course of the session so as to expose the 

students gradually to the full complex model. The order of a model concerns what 

type of reasoning it supports (i.e., qualitative reasoning or quantitative reasoning). 

White and Frederiksen postulated that a qualitative understanding needs to be 

developed before a quantitative understanding should occur. A further distinction 

is made in the qualitative understanding; the focus should initially be on the 

students’ reasoning about the presence or absence of elements from the 

phenomena under investigation, and subsequently change to reasoning on the 

basis of incremental changes of these elements.  

Model order progression resembles the type of scaffolding that was advocated on 

the basis of the Mulder et al. (2010) study. Model elaboration progression 

represents a viable alternative to provide learners with increasingly sophisticated 

models about a domain, and a comparison among these two forms of model 

progression could validate the alleged benefits of the former. Model perspective 

progression was not included in this comparison because there is no inherent 

increasing complexity associated with offering different perspectives of the same 

phenomena. As model perspective progression is not relevant to the purpose of the 

present study, the remaining part of this section discusses research on the simple-

to-complex organization of learning materials.  

Gradually introducing learners to increasingly more sophisticated or 

comprehensive subject matter has long since been recognized as powerful 

instructional strategy (e.g., Gagné, 1977; Reigeluth & Stein, 1983). Early attempts to 

reducing complexity during initial learning with computers can be found in the 

field of software training. Carroll and Carrithers (1984) provided novice learners 

with a so-called training-wheels system for learning to use a word processor. The 

key characteristic of this system is that features of the word processor new users 

typically do not need, but which can be springboards for errors and confusions, 
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were disabled. Carroll and Carrithers reasoned that in a reduced interface learners 

are prevented from getting caught up in tangles of error and confusion, and as 

such will spend less time on errors. In their first experiment, the participants were 

‘learning by doing’, they were given an example letter which they had to 

reproduce with the word processor. Participants who were provided with the 

training-wheels version of the word processor performed faster and more 

successful overall than participants who worked with the complete version of the 

program.  

Research on combining a training-wheels system with other support has produced 

mixed results. Carroll and Carrithers (1984; experiment 2) demonstrated that 

training-wheels have added value to an instructional manual: learners working 

with an instructional manual in a simplified version of the domain performed 

faster and more successful compared to learners working with a manual in the full-

complex domain. Results further showed that the training-wheels reduced 

learners’ time spent recovering from errors, which most likely accounts for the 

instructional efficacy of the training-wheels system (cf. Lazonder & van der Meij, 

1995). However, Spannagel Girwids, Löthe, Zendler, and Schroeder (2008) found 

that learning to use a spreadsheet program with animated instructions, 

predominantly led to better performance than learning with text manuals, and that 

a training-wheels interface did not yield better results for students who learned 

with animations.  

In a more recent study, Löhner et al. (2003) replicated the training-wheels findings 

in the domain of modelling the temperature inside a house. They compared the 

performance of a textual modelling group and a graphical modelling group. 

Participants in the textual modelling group had to build a full-complex model by 

specifying the relations between variables in precise, quantitative form. 

Participants in the graphical modelling group, in contrast, only had to indicate 

whether relations were positive or negative (i.e., specifying the relations 

qualitatively); the underlying mathematical specifications of the relations were 

handled by the system. Students using the graphical representation were found to 

switch quickly from one relation to the next, and try every idea that came up, 

which might be a viable strategy for the initial stages of a modelling process. 

Löhner et al. therefore concluded that at the beginning of an inquiry process, 

novice learners benefit from building qualitatively specified models compared to 

building quantitative models. 

Although these studies demonstrate that starting off in a simple form can be 

beneficial to learning, they did not take the progression to higher levels of 

complexity into consideration. Supportive evidence on this matter can be found in 

the literature on learning with simulations. In a study by Alessi (1995), model 
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progression pertained to the fidelity of the simulation; the general idea behind this 

form of progression was to go from ‘simplified’ to more ‘realistic’ simulations. 

Alessi assumed that fidelity progression would enhance learning because a 

simplified simulation supposedly facilitates initial learning whereas high fidelity is 

expected to be better from a transfer point of view. To validate this claim, three 

groups were compared that learned procedural knowledge about how to use a 

multimeter either with a low-fidelity simulation, fidelity progression simulations, 

or a high-fidelity simulation. The results confirmed some of Alessi’s expectations: 

even though the three groups did not differ on measures of learning while working 

with the simulations, the high fidelity and progression simulations were found to 

enhance performance on a transfer task, thus supporting the notion that high 

fidelity simulations are superior in transfer. More recently, Zacharia and Olympiou 

(2011) were unable to replicate these findings. Participants who progressed from 

experimenting with a simulation to experimenting with the real equipment were 

found to learn as much as those who experimented with the real equipment only. 

However, participants who only worked with the simulation performed as well as 

participants in the other two conditions.   

Other studies investigated model elaboration progression. Rieber and Parmley 

(1995) compared performance of students who were presented with either a 

structured or an unstructured simulation regarding the physics principles of 

Newtonian mechanics. The structured simulation consisted of a series of four 

activities in which students were given increasing levels of control over a 

simulated, free-floating object. This simulation was considered ‘structured’ because 

each activity included a controlled number of new subskills, and each successive 

activity incorporated the subskills of the preceding activity. The unstructured 

simulation consisted of an open-ended and unstructured activity in which subjects 

assumed full control over the floating object from the very beginning. Results 

indicated that students in the structured condition outperformed students in the 

unstructured condition.  

Swaak, van Joolingen, and de Jong (1998) replicated these findings in the domain 

of oscillatory motion. The type of motion in their study depended on the presence 

of friction and/or an external force. In case both are absent, the motion is free; if 

only friction is present, the oscillation is damped; and if both are present, there is 

forced oscillatory motion. Model progression pertained to the degree of 

elaboration in that learners were first given a simulation about free oscillatory 

motion, then a simulation of damped motion, and finally a simulation on forced 

oscillatory motion. The study’s main finding was that students in the model 

progression condition developed more intuitive knowledge about oscillatory 

motion than students from a control group who received no model progression. 
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Results further indicated that adding assignments to the model progression has no 

significant facilitating or deteriorating effect.  

Quinn and Alessi (1994) were unable to replicate the facilitative effects of model 

progression. They compared groups that differed in whether the simulation was 

presented in its most complex form initially or whether it was presented in sections 

of increasing complexity. The computer simulation was a model of the spread of an 

influenza epidemic in which the number of people ill with influenza depended on 

four variables: the number of contacts per person per week, the time to illness, the 

duration of illness, and the length of the immune period. One group worked with a 

simulation in which all four variables were present, whereas an other (model 

elaboration progression) group worked on a simulation in which the variables 

were introduced gradually. Students in the latter group initially performed better 

than students who worked with the full-complex simulation, but this effect faded 

out upon completion of the task.  

De Jong et al. (1999) combined model perspective and elaboration progression in a 

simulation on collisions. They divided the domain into five progression levels. The 

model’s degree of elaboration was progressed in the first three levels; the last two 

levels offered two alternative perspectives on collisions. Contrary to Swaak et al. 

(1998), this study showed no main effect of model progression, which was 

allegedly due to the level of task complexity. Collisions is a relatively 

straightforward domain that might not be complicated enough for the effects of 

model progression to show. This explanation was substantiated by the fact that 

participants in this study had considerable prior knowledge, and therefore might 

not have needed the first three level of model progression.  

To conclude, model progression has been investigated in slightly different 

configurations, task domains, and for different types of knowledge. These cross-

study variations could be the reason why results on the effectiveness of model 

elaboration progression are inconclusive. Another, perhaps more plausible 

explanation is that model elaboration progression is a suboptimal way to arrange 

learning tasks in a simple-to-complex sequence. Various authors have postulated 

that model order progression better meets the learning needs of domain novices 

(Löhner et al., 2003, Mulder et al., 2010, Veenman & Elshout, 1995, White & 

Frederikisen, 1990), but the effectiveness of this type of scaffolding has neither 

been assessed nor compared to that of model elaboration progression. Both issues 

were central to the research reported below.  
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Research design  

This study aimed to scaffold domain novices on an inquiry learning task with 

model progression in which the model order is progressed. The study utilized a 

between-subject design with three conditions. Students in the model order 

progression (MOP) condition had to build increasingly more specific models. They 

received a full simulation with four variables, and had to model its behaviour in 

three consecutive phases. Modelling thus progressed from indicating the presence 

of all elements and relations in the model, through a qualitative specification of 

these relations, to a quantitative specification. Performance in this condition was 

compared to two reference groups. In one group, the model elaboration progression 

(MEP) condition, students had to build increasingly more comprehensive models. 

Their version of the simulation contained four variables that were introduced one 

at a time. Students’ task was to build the model underlying each simulation 

quantitatively from scratch. The second reference group was not scaffolded by 

model progression. Students in this control condition received the full-complex 

simulation and had to infer and build the quantitative model that governed its 

behaviour from scratch and without any externally-imposed structuring.  

Comparing performance success of both model progression conditions to the 

control condition will demonstrate the instructional efficacy of this type of 

scaffolding. A comparison among both model progression groups served to 

validate the predicted superiority of MOP (Hypothesis 1). As MOP was intended 

to scaffold learners’ relation construction –a key problem to domain novices– MOP 

students were expected to outperform MEP students on the construction of 

relations in their models (Hypothesis 2).  

 

Method 

Participants and design 

The initial sample consisted of 90 Dutch high school students from the science 

track, aged 15-17. However, as 6 students were absent due to illness during one of 

the sessions, analyses were performed with 84 participants. A review of school 

curricula and teacher statements showed that the charging of capacitors, which 

was the topic of inquiry, had not been taught yet in the students’ physics classes. A 

pretest was administered to substantiate that participants were indeed domain 

novices; class-ranked pretest scores were used to assign students to either the MOP 

condition (n = 28), the MEP condition (n = 26), or the control condition (n = 30).  
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Materials 

Inquiry task and learning environments 

All participants worked on an inquiry task about the charging of a capacitor. Their 

assignment was to examine an electrical circuit in which a capacitor was 

embedded, and create a computer model that mirrors the capacitor’s charging 

behaviour. Participants performed this task within a modified stand-alone version 

of the Co-Lab learning environment (van Joolingen et al., 2005) that stored all 

participants’ actions in a logfile.  

The learning environment housed a simulation of an electrical circuit containing a 

voltage source, two light bulbs, and a capacitor. Through systematic 

experimentation with this simulation, participants could induce four physics 

equations: (1) Ohms law, (2) the junction rule of Kirchoff’s law, (3) the loop rule of 

Kirchoff’ law, and (4) the behaviour of capacitors.  

The learning environment also contained a model editor tool that enabled 

participants to represent their knowledge of the four physics equations in an 

executable computer model. As can be seen from Figure 3.1, such models have a 

graphical structure that consists of variables and relations. Variables are the 

constituent elements of a model and can be of three different types: variables that 

do not change over time (i.e., constants), variables that specify the integration of 

other variables (i.e., auxiliaries), and variables that accumulate over time (i.e., 

stocks). Relations define how two or more variables interact. Each relation is 

visualized by an arrow connector to indicate the causal link between model 

elements, and specified by a quantitative formula to indicate the exact nature of 

this relationship. The model editor also enabled participants to test their 

understanding by running the model and analysing its output through the table 

and graph tool. These tools further allowed students to compare model and 

simulation output in a single window. Students could use the results of this 

comparison to adjust or fine-tune their model and thus build an increasingly 

elaborate understanding of a charging capacitor. 

An embedded help file tool contained the assignment and offered explanations of 

the operation of the tools in the learning environment. The help files also informed 

participants about the specifics of their condition by indicating whether and how 

their session was divided into phases. The help files contained no domain 

information on electrical circuits and capacitors as this knowledge should be 

inferred from interacting with the simulation. 
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Variants of the learning environme

All conditions used the same instructional content (i.e., electrical circuits), but 

differed with regard to the scaffolding mechanisms (see Figure 

the 

(as described above) and thus received no scaffolding. 

Participants in the 

version of the simulation, and were asked to induce and build increasingly specific 

models. Specificity pertained to the relations in the model and progressed in three 

phases from identifying a relation to quantitat

Lazonder, Wilhelm, & van Lieburg, 2009; Mulder et al., 2010). In Phase 1, students 

just had to indicate the model elements (variables) and which ones affected which 

others (relationships) 

provide a qualitative specification of each relationship so as to indicate the general 

direction of effect (e.g., if resistance increases, then current decreases). In Phase 3, 

students had to specify each relationship quantita

equation (e.g., I = V / R). 
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had to induce and build a quantitative model of the circuit in each simulation. 

Over phases, participants could extend their model to incorporate the new 

elements. Both the bar chart tool and the possibility to engage in qualitative 

modelling were disabled in this condition.  

 

Pretest 

A pretest consisting of eight open-ended questions assessed participants’ prior 

knowledge of electrical circuits. Four questions addressed the meaning of key 

domain concepts (i.e., voltage source, resistance, capacitor, capacitance), the other 

four items addressed the knowledge about the charging of a capacitor in an 

electrical circuit (i.e., Ohms law, Kirchoff’s law (including its two rules: the 

junction rule and the loop rule), and the behaviour of capacitors). As performance 

on the test was expected to be low, three simple filler items on the interpretation of 

numerical data were added to sustain students’ motivation during the test. These 

filler items were left out of the analysis. A rubric was developed to score 

participants’ answers to the eight questions, and one point was allocated to each 

correct response. Two raters used this rubric to score a randomly selected set of 24 

pretests; inter-rater reliability was .89 (Cohen’s κ). 

 

Procedure 

All participants engaged in two sessions: a 50-min introduction and a 100-min 

experimental session. The time between sessions was one week maximum. To 

control for differences of the duration of this break, the allocation to condition 

occurred within each class, so that participants with different inter-session time 

gaps were equally spread across conditions. During the introductory session, 

participants first filled out the pretest, then received a guided tour of the Co-Lab 

learning environment, and finally completed a brief tutorial that familiarized them 

with the system dynamics modelling language and the operation of the modelling 

tool.  

The experimental session started with a brief reminder that some participants 

would work in a learning environment where the assignment was split into phases 

(i.e., the model progression conditions), whereas others would receive a non-

divided assignment (i.e., the control condition). Participants were instructed to 

open the help file tool upon entering the learning environment to find out the 

specifics of the condition they were assigned to. Consequently, participants were 

only aware of the details of their own condition. Participants in both model 

progression conditions were further told that they were free to progress through 

the phases, but could not return to a previous phase. Toward this end, phase 
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changes were password protected, and participants had to ask the experimenter to 

unlock the next level. The experimenter did so only if a participant was certain 

about the phase change and had saved his/her model. After these instructions 

participants started the assignment. They worked individually and could ask the 

experimenter for technical assistance only. Participants could stop ahead of time if 

they had completed the assignment.  

 

Coding and scoring 

All data were assessed from the logfiles. Variables under investigation were time 

on task and performance success. Time on task concerned the duration of the 

experimental session.  

Performance success scores were assessed from participants’ final models. For both 

model progression conditions, intermediate performance success scores were 

assessed at the end of each phase. A model structure score was calculated in 

accordance with Manlove, Lazonder, and de Jong’s (2006) model coding rubric. 

This score represented the number of correct variables and relations in the models. 

‘Correct’ was judged from the reference model shown in Figure 3.1. One point was 

awarded for each correctly named element; an additional point was given if that 

variable was of the correct type (i.e., constant, auxiliary, or stock). Concerning 

relations, one point was awarded for each correct link between two variables and 

one point was awarded for the direction. The maximum model structure score was 

38. A previous study (Mulder et al., 2010) found inter-rater reliability estimates of 

.74 (variables) and .92 (relations) (Cohen’s κ). 

As the model structure score leaves the quantitative aspects of the model 

unaddressed, a complementary final model content score was calculated. This 

score represented participants’ understanding of the physics equations that 

gouvern the behaviour of a charging capacitor (i.e., Ohms Law: I = V / R; 

resistances connected in parallel: 1 / Rt = 1 / R1 + 1 / R2; the potential difference in 

the circuit depends on the power source and the potential difference across the 

capacitor: ΔV = Vs - Vc; and the relationship between the potential difference across 

the capacitor and the amount of charge that gathers on the capacitor: C = Q / Vc). In 

a correct, fully-specified model these components are correctly integrated as 

represented in Equation 1:  

(dQ / dt) =  (Vs – Q / C) * (1 / R1 + 1 / R2)    (1) 

One point was awarded for each correctly specified part, leading to a four-point 

maximum score. A prior study (Mulder et al., 2010) found the inter-rater reliability 

to be 1.0 (Cohen’s κ).  
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Results 

Preliminary analyses were performed to check whether the matching of 

participants had lead to comparable levels of prior knowledge across conditions 

and to validate the selection of participants. The entire-sample mean pretest score 

was 1.35 (SD = 1.10), which was deemed sufficiently low to assume that 

participants can be considered domain novices. The mean pretest scores for each 

condition are presented in Table 3.1. Univariate analysis of variance (ANOVA) 

showed that there were no significant differences in prior knowledge among the 

three experimental conditions, F(2, 81) = 0.24, p = .787. The time on task scores from 

Table 3.1 further show that, on average, participants in each condition spent over 

90 min working on the assignment. Univariate ANOVA showed that the minor 

cross-condition differences in time were not statistically significant, F(2, 81) = 1.34, 

p = .268.  

Performance success was assessed from the participants’ final models (see Table 3.1). 

A distinction was made between model content and model structure scores. As the 

model content scores failed to meet the normality assumption, this data was 

analysed by a non-parametric Kruskal-Wallis test. Results showed a significant effect 

for experimental condition on the model content scores of participants’ final models, 

H(2) = 13.16, p = .001. Post hoc comparisons, using Mann-Whitney U tests with 

Bonferroni correction (α = .0167) revealed no differences in model content scores 

between the MOP condition and either the MEP condition, U = 114, or the control 

condition, U = 174. Comparison among the latter two conditions revealed a  

 

Table 3.1 

Summary of participants’ performance 

 
MOP (n=28) MEP (n=26) Control (n=30) 

M SD M SD M SD 

Pretest score 1.39 1.20 1.42 1.18 1.23 1.01 

Time on task (min) 98.41 5.82 93.60 13.82 95.58 11.66 

       

Performance success       

Model content score a,b 0.00 0.00 0.50 0.91 0.07 0.37 

Model structure score (variables) c 7.29 2.57 6.58 2.50 6.63 1.63 

Model structure score (relations) d 6.86 3.79 3.42 3.60 3.17 3.24 
aMaximum score = 4. bAs only 12 MOP participants progressed through all phases, a model content 

score of 0 can often be explained by slow progressing through phases. cMaximum score = 18. 
dMaximum score = 20. 
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significant difference in favour of the MEP condition, U = 298, r = .33. In 

interpreting these results, it should be noted that few MOP participants (n = 12) 

reached the third phase where they could specify their model quantitatively. The 

remaining 16 MOP participants obtained a model content score of zero, which, as 

will be discussed below, can often be explained by slow progressing through 

phases.  

Participants’ model structure scores were analyzed by MANOVA with both model 

structure aspects (i.e., variables and relations) as dependent variables. Using 

Pillai’s trace, this analysis produced a significant effect for experimental condition, 

V = 0.21, F(4, 162) = 4.74, p = .001. Subsequent univariate ANOVAs validated the 

conjecture that model progression has no effect on the number of correct variables 

in the students’ model, F(2, 81) = 0.85, p = .431, but does enhance the quality of the 

relations between these variables, F(2, 81) = 9.53, p < .001. Helmert planned 

contrasts revealed that the model progression conditions combined had 

significantly higher scores for relations than the control condition, t(81) = 2.45, 

p = .006, r = .26, and that the MOP condition outperformed the MEP condition on 

this measure, t(81) = 3.56, p = .001, r = .37. 

Performance success within both model progression conditions was assessed at 

three points in time. Table 3.2 reports descriptive results for each assessment, 

indicating how the quality of the participants’ models developed through time. For 

statistical analysis of this data it needs to be taken into account that not all 

participants progressed through all phases. Based on their progression through 

phases they were classified as either double phase changers (i.e., participants who 

worked in all three phases, n = 29), single phase changers (i.e., participants who  

 

Table 3.2 

Mean performance success scores in both model progression conditions by phase 

 
MOP  MEP 

n M SD n M SD 

Model structure score (variables)       

Phase 1 28 6.46 2.50 26 4.08 1.55 

Phase 2 26 7.04 2.68 20 5.25 1.92 

Phase 3 12 6.92 2.47 17 6.82 2.94 

       

Model structure score (relations)       

Phase 1 28 5.57 3.63 26 1.85 2.13 

Phase 2 26 6.04 3.68 20 2.20 2.80 

Phase 3 12 6.42 3.90 17 2.71 3.47 
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worked in Phase 1 and 2, n = 17) and no phase changers (i.e., participants who only 

worked in Phase 1, n = 8). As previously mentioned, model quality could not be 

assessed from the model content score for most of the MOP participants; therefore 

for the remainder of this results section the model structure score will be the only 

measure of performance success. 

Prior to analysing how the quality of the participants’ models developed over time 

and across conditions, it was examined whether the subset of participants who 

progressed to subsequent phases were representative of the entire sample in their 

experimental condition. Logistic regression analyses (using the Enter method) 

were conducted to determine whether transition to the second and third phase 

depended on the type of model progression and performance success. The models 

generated by the logistic regression predicting the phase changes are reported in 

Table 3.3. This data indicates that phase change was related to the type of model 

progression but not to performance success, indicating that the type of model 

progression influenced the speed of progression through phases. Furthermore, 

performance success was not a significant predictor of phase change, suggesting 

comparable performance success slopes for double, single, and no phase changers. 

This means that the students who progressed to higher phases performed as well  

 

Table 3.3 

Logistic regression-analyses (enter method) testing the dependence of progression speed on condition and 

performance success 

Predictor B SE 
Wal

d 
d.f. sig. Exp(B) 

Dropout phase 2a       

Condition –2.37 1.24 3.64 1 .056 0.09 

Model structure (variables aspect) phase 1 –0.05 0.26 0.04 1 .835 0.95 

Model structure (relations aspect) phase 1 –0.18 0.17 1.12 1 .289 0.83 

Constant 4.18 1.82 5.28 1 .022 65.09 

       

Dropout phase 3b       

Condition 2.01 0.91 4.86 1 .028 7.46 

Model structure (variables aspect) phase 1 0.12 0.27 0.21 1 .649 1.13 

Model structure (relations aspect) phase 1 0.44 0.28 2.51 1 .113 1.55 

Model structure (variables aspect) phase 2 –0.03 0.20 0.02 1 .882 0.97 

Model structure (relations aspect) phase 2 –0.50 0.27 3.46 2 .063 0.61 

Constant –0.12 1.19 0.01 1 .919 0.89 
aR2 = .12 (Hosmer & Lemeshow), .09 (Cox & Snell), .15 (Nagelkerke). Model χ2(3) = 4.86, p = .182.  
bR2 = .21 (Hosmer & Lemeshow), .24 (Cox & Snell), .33 (Nagelkerke). Model χ2(5) = 12.63, p = .027. 
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as the students who remained in a lower phase. Consequently, analysis of 

performance success slopes of the double phase changers is likely to be 

representative for single phase changers’ performance success slopes over Phase 1 

and 2, and for the no phase changers’ performance success over Phase 1. 

A mixed-design MANOVA was performed to analyse how model structure scores 

for variables and relations evolved over the phases in each condition. Using Pillai’s 

trace, MANOVA showed significant multivariate main effects for the between-

subjects factor condition, V = 0.27, F(2, 26) = 4.88, p = .016, the within-subject factor 

phase, V = 0.49, F(4, 24) = 5.76, p = .002, and a significant Condition × Phase 

interaction,V = 0.34, F(4, 24) = 3.09, p = .035.  

Subsequent univariate ANOVAs with the variables aspect of the model structure 

score as dependent variable indicated a non-significant main effect for condition, 

F(1, 27) = 2.32, p = .139, a significant main effect for phase, F(2, 54) = 14.74, p < .001, 

and a significant Condition × Phase interaction, F(2, 54) = 5.28, p = .008. The latter 

result indicates that the increase in model quality (variables aspect) over phases 

differed among MOP and MEP participants. Planned contrasts were performed to 

break down this interaction. The first contrast, comparing intermediate to initial 

scores, was not significant, F(1, 27) = 0.24, p = .628, meaning that both MOP and MEP 

participants’ variables aspect of the model structure score slightly increased during 

Phase 2. From Table 2 it can be seen that scores in the MEP condition increased 

during Phase 3, whereas scores in the MOP condition remained relatively constant 

during this phase, Planned contrasts of the scores at the end of Phase 2 and 3 showed 

this difference to be statistically significant, F(1, 27) = 7.71, p = .010. Upon interpreting 

these results, it needs to be taken into account that participants in the MEP condition 

started with a partial simulation that progressed over phases to the full-complex 

simulation in Phase 3. Therefore, an increase in performance success is inherent to 

the experimental manipulation in the MEP condition, whereas in the MOP condition 

it is not. 

Univariate ANOVAs with the relations aspect of the model structure score as 

dependent variable indicated both main effects to be significant (condition: 

F(1, 27) = 9.86, p = .004; phases: F(1. 69, 45. 56) = 5.54, p = .010), whereas their 

interaction was not, F(1.69, 45.56) = 0.14, p = .836. (As the sphericity assumption was 

violated, the Huynh-Feldt corrected degrees of freedom are reported). This indicates 

that the relation aspect of the model structure score in the MOP condition was 

generally higher than in the MEP condition. Furthermore, as shown in Table 3.2, 

there was a gradual increase in the relations’ aspect of the model structure score over 

phases. Planned contrasts revealed that this increase was not significant during 

Phase 2, F(1, 27) = 0.47, p = .497, whereas it was significant during Phase 3, 

F(1, 27) = 7.12, p = .013. It is interesting to see that, although an increase is inherent to 
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the manipulation in the MEP condition, the model structure score regarding the 

relations in the model does not show a different slope for the MEP condition 

compared to the MOP condition (as was the case for the variables aspect of model 

structure score).  

 

Discussion 

This study investigated the effects of model progression on students’ performance 

during an inquiry learning task. Model progression in general was predicted to 

lead to higher performance success (Hypothesis 1). Furthermore, as model order 

progression was assumed to be more in keeping with domain novices’ learning 

needs, participants in the MOP condition were expected to outperform those from 

the MEP condition (Hypothesis 2). Both predictions were generally supported by 

the results.  

Evidence for Hypothesis 1 comes from the comparison of the two model 

progression conditions together with the control condition. Participants from both 

model progression conditions created more comprehensive models–as indicated 

by their model structure scores–than their control counterparts. Participants’ 

model content scores further indicate that students in the MEP condition created 

more sophisticated models than students from the control condition. The predicted 

superiority of the MOP condition on this measure could not be shown, which is 

likely due to their slow progressing through phases. 

Differences in performance success were also found between both model 

progression conditions. Consistent with Hypothesis 2, students from the MOP 

condition outperformed students in the MEP condition. Comparison of their final 

models indicated that MOP and MEP students were equally proficient in 

identifying which elements are relevant to their models (i.e., voltage source, light 

bulbs, and capacitor), whereas MOP participants more accurately modelled the 

relations between those elements. However, the predicted superiority of the MOP 

condition could not be shown on the model content score. 

Existing research on the effectiveness of model progression paint a mixed picture, 

and the present findings could help explain why this is so. De Jong et al. (1999) 

previously proposed two conditions for model progression to be effective: a high 

level of task complexity and low levels of prior domain knowledge. The present 

study suggests that the type of model progression constitutes a third condition: in 

the physics domain of electrical circuits, model order progression was found to be 

more effective than model elaboration progression. The inconsistent results from 



Comparing two types of model progression 

55 

prior research might therefore be attributable to the application of other, less 

effective types of model progression such as model fidelity progression (i.e., 

simulations going from ‘simplified’ to more ‘realistic’) and model elaboration 

progression (Alessi, 1995; Jackson, Stratford, Krajcik, & Soloway, 1994; de Jong et 

al., 1999; Swaak et al., 1998; Quinn & Alessi, 1994). 

Even though all cited studies attempted to scaffold students on a science task, there 

is some evidence that the effectiveness of model order progression extends to 

different domains. In a recent study, Slof, Erkens, and Kirschner (2010) successfully 

applied model order progression to a business-economics task. They distinguished 

three models (a conceptual, causal, and simulation model) that essentially resemble 

the current study’s model order progression phases. Students who consecutively 

received the three models performed better than students who only worked with 

one of these models throughout the entire session.  

But do students who perform better also learn more? A knowledge posttest might 

have answered this question, but could not be included in the present study for 

practical reasons. Yet theoretical and empirical evidence suggests that the 

performance measures (i.e., model quality scores) that assessed the instructional 

effects of model progression are indicative of the knowledge students acquired 

during the experiment. Our students built a system dynamics model that was 

assumed to represent their knowledge of a charging capacitor. This assumption is 

based on constructionism, an instructional paradigm in which learning is 

considered synonymous to the knowledge construction that takes place when 

learners are engaged in building objects (Kafai & Resnick, 1996). Research has 

confirmed that the construction of models is associated with cognitive learning 

(e.g., van Borkulo, 2005), and that the quality of students’ models is associated with 

their reasoning processes (Sins et al., 2005). It thus seems plausible that the 

superior performance of the MOP participants mirrors higher knowledge 

acquisition. Still, future research is needed to validate this claim, preferably 

through an independent measure of learning to supplement performance success 

measures.  

Learning performance in the present study, although significant, was quite modest. 

The average model structure scores indicate that even the models created by 

participants in the MOP condition only partially reflected the contents of the 

domain. Future research might assess students additional support needs by 

addressing learning behaviour. A closer look at the quality of students’ simulation 

and model experiments could provide more detailed information as to why 

elements and relations in the model are correct or not. From the present study it 

seems plausible that, given that relatively few participants reached the final 

progression phase, time on task was too short for students to create a full-fledged 



Chapter 3 

56 

model. Task performance could accordingly be enhanced by either increasing time 

on task, or by promoting participants efficiency during the task.  

Prior attempts to increase efficiency have tried to accompany model progression 

with assignments (de Jong et al., 1999; Swaak et al., 1998). These efforts turned out 

to be unsuccessful; future research should either continue along these lines or 

explore the effect of other types of additional support. One example would be to 

embed domain information in the learning environment. Lazonder, Hagemans, 

and de Jong (2010) found that this type of content support significantly enhances 

students’ inquiry learning performance. Offering designated pieces of domain 

information in each model progression phase might accordingly improve the 

efficiency of students’ modelling performance. 

Efficiency could also be increased by fine-tuning the way model order progression 

is implemented. Model progression in this study followed the students’ learning 

pace: if learners comprehended a phase, they could progress to the next phase. 

However, students progressed to consecutive phases with suboptimal models, 

suggesting that they progressed without full comprehension of the previous phase. 

This might have compromised the effectiveness of model progression which aims 

to keep the learning environment manageable by not introducing too many ideas 

at the same time (Swaak et al., 1998). For students who progressed to phases with 

suboptimal knowledge, the new phase is unlikely to be manageable. This might 

also have accounted for the large number of students who never progressed 

beyond Phase 2 in this study. As such, the instructional effectiveness of model 

order progression could be further enhanced by prohibiting phase-change until a 

minimal comprehension level is reached. This could be implemented by a 

restrictive software agent that functions as a gatekeeper at the phase-change points 

based on a model quality benchmark.  

Restricting phase-changing nevertheless appears (and probably is) a 

counterintuitive way to help students progress through all phases. An alternative 

approach might be to further reduce phase change restrictions. Based on Klahr and 

Dunbar (1988), inquiry learning is often defined as consisting of three iterative 

processes: hypothesizing, experimenting, and evaluating evidence. The way 

students perform these processes is assumed to depend on their knowledge of the 

task at hand. Model order progression as implemented in this study only enabled 

students to iterate these processes within each phase. This suggests that model 

order progression might conflict with the iterative nature of the inquiry learning 

process; directions confirming this conflict can be found in the results. As model 

structure scores in the MOP condition were found to increase even in Phase 2 and 

3, students apparently generated new or adjusted hypotheses on a Phase 1 level in 

subsequent phases. Therefore, an adjustment to model order progression, to the 
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extent that students can freely navigate through the order dimension both 

forwards and backwards (i.e., iterative model order progression), might better suit 

the iterative nature of the inquiry learning process.  

To conclude, this study points to the idea that model progression can foster 

learning performance, and that learners benefit most from model order 

progression. Future research is needed to investigate how model order progression 

can be further optimized, and two alternative approaches were proposed. One is to 

introduce a restrictive software agent that functions as gatekeeper at the phase-

change points, the second alternative is to be less restrictive and allow students to 

wander across phases in any order they see fit. 
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Chapter 4 

 

Model progression: The influence of phase 

change restrictions1 
 

Abstract 

Model progression denotes the organization of a learning task in increasingly 

sophisticated phases. This study examined whether and how the conditions for 

changing model progression phases affects learning and performance in an inquiry 

learning task combined with modelling. Students in the ‘standard’ model 

progression condition (n = 19) could enter subsequent phases at will, and indeed 

did so more often than students from the restricted condition (n = 20) who could 

progress to subsequent phases only if sufficient knowledge had been acquired. 

Still, restricted participants who managed to progress to a subsequent phase did so 

with better models. Students from the unrestricted condition (n = 22) were free to 

enter subsequent and previous phases. They used these navigation options 

thoughtfully, and progressed to subsequent phases more often than students from 

the ‘standard’ condition. Even though both model progression variants influenced 

the learning process, they did not enhance students’ performance success. It thus 

seems that neither more liberal nor more strict requirements to change model 

progression phases are sufficient to further improve the effectiveness of model 

progression. Additional support is needed for students to reach a full 

understanding of the learning domain.  

                                                 
1 This chapter is based on: Mulder, Y. G., Lazonder, A. W., de Jong, T., 

Anjewierden, A., & Bollen, L. (2012). Validating and optimizing the effects of 

model progression in simulation-based inquiry learning. Journal of Science Education 

and Technology. Advance online publication. doi: 10.1007/s10956-011-9360-x 
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Introduction 

Computer-based inquiry learning environments are known to foster a deeper 

understanding of a domain. These environments increasingly offer computer 

simulations and modelling facilities for students to explore science phenomena. As 

in authentic scientific inquiry, modelling is considered an integral part of inquiry 

learning in that students have to build models to express their understanding (van 

Joolingen, de Jong, Lazonder, Savelsbergh, & Manlove, 2005; White, Shimoda, & 

Frederiksen, 1999). This understanding can be tested by running the model; model 

data can then be compared with prior knowledge or data from the simulation, and 

these comparisons yield further insight into the phenomenon.  

Most students, however, experience difficulties with this mode of learning, and 

accordingly exhibit suboptimal performance (Dean & Kuhn, 2007; Klahr & Nigam, 

2004; Mayer, 2004; Mulder, Lazonder, & de Jong, 2010). A review by de Jong and 

van Joolingen (1998) gives an account of the intrinsic problems students face 

during simulation-based inquiry learning. For example, students cannot infer 

hypotheses from data, design inconclusive experiments, show inefficient 

experimentation behaviour, and ignore incompatible data. Similar problems arise 

during modelling. Hogan and Thomas (2001), for instance, noticed that students 

often fail to engage in dynamic iterations between examining output and revising 

models, and Stratford, Krajcik, and Soloway (1998) observed a lack of persistence 

in debugging models to fine-tune their behaviour.  

These findings suggest that additional support is needed in order for inquiry 

learning and modelling to be more effective. This support can take several forms, 

such as content explanations (e.g., Lazonder, Hagemans, & de Jong, 2010), process 

prompts (e.g., Lin & Lehman, 1999) and direct instruction in inquiry skills (e.g., 

Klahr & Nigam, 2004). Model progression (White & Frederiksen, 1990) is probably 

the least intrusive form of support that aims to pave students’ way through an 

inquiry by carefully structuring the task content according to a simple-to-complex 

sequence. Because of its unobtrusive nature, model progression complies with the 

self-directed way of learning that is pivotal to ingegrated approach to science 

education (see Chapter1). Model progression would entail that students start 

working on a simpler version of a task, and gradually progress to the more 

complex versions of that task. Such progressions aim to keep the learning 

environment manageable (Swaak, van Joolingen, & de Jong, 1998) and reduce the 

possibility that students get overwhelmed. As a result, students’ inquiry efforts are 

more likely to be effective.  
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Model progression was indeed found to lead to higher performance success by 

learners in some studies (Alessi, 1995; Eseryel & Law, 2010; Rieber & Parmley, 

1995; Swaak et al., 1998), but other studies report less favourable results (de Jong et 

al., 1999; Quinn & Alessi, 1994). Mulder, Lazonder, and de Jong (2011) reasoned 

that these differential effects are attributable to the way in which task complexity is 

increased. They compared two types of model progression: model order 

progression, which gradually increases the specificity of the relations between 

variables, and model elaboration progression, which gradually increases the 

number of variables in the task. The model order progression students generally 

performed better on the task than the model elaboration students.  

These benefits notwithstanding, performance in the model order progression 

condition in the Mulder et al. (2011) study, left room for improvement. In terms of 

model quality, the students’ final models showed just approximately 40 % under-

standing of the domain. Furthermore, few students progressed through all three 

model order progression phases: about 90% of students continued to the second 

phase, but only about 40 % of students progressed to the third –and final– phase. 

Analysis of students’ intermediate models further showed that progressions from 

the first to the second phase often occurred with little knowledge. This might have 

challenged the effectiveness of model progression, which aims to keep the learning 

environment manageable by not introducing too many new ideas at the same time. 

If students progress to a subsequent phase with insufficient knowledge, the new 

phase is less manageable and can cause students to get stuck. This might have 

accounted for the large number of students in the Mulder et al. (2011) study who 

never progressed beyond the second phase.  

In view of these problems, the effectiveness of model order progression could be 

further increased by restricting phase changes until sufficient knowledge has been 

acquired. Restricting phase-changing nevertheless appears (and probably is) a 

counter-intuitive way to help students progress through all phases. An alternative 

solution might be to broaden phase-change possibilities so as to allow students 

who get stuck in a particular phase to return to previous phases to remediate 

knowledge deficiencies. Inquiry learning is often defined as consisting of three 

iterative processes (hypothesising, experimenting, and evaluating evidence) that are 

shaped on the basis of the student’s knowledge of the task (Klahr & Dunbar, 1988; 

Lazonder, Wilhelm, & Hagemans, 2008). Model order progression in the Mulder et 

al. (2011) study required students to iterate these processes within each phase, and 

this could be at odds with the iterative nature of inquiry learning. Therefore, an 

adjustment to model order progression where students can freely navigate forward 

and backward through the phases, seems more in keeping with the iterative nature 

of the inquiry learning process. 
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The present study aimed to explore the effects of both ways to improve model 

order progression. The basic premise underlying this research was that model 

order progression could be improved by enhancing students’ performance within 

the phases. Both restricting phase changes until students have acquired sufficient 

domain knowledge, and removing phase-change restrictions by allowing free 

navigation through the phases –both forward and backward– were hypothesized 

to enhance students’ performance. This assumption was investigated in a between-

subjects design with three conditions. Model order progression was implemented 

in all three conditions, and divided the inquiry learning task in three consecutive 

phases. Students in the semi-restricted condition could progress to subsequent 

phases as they pleased (i.e., there were no performance benchmarks for 

progressing), but could not return to a previous phase. To investigate the influence 

of phase-change restrictions, performance in this condition was compared with 

two experimental groups. In one group, the restricted condition, students could 

only progress to the next phase if they had reached sufficient understanding. 

Returning to a previous phase was not possible in this condition. In the second 

group, the unrestricted condition, there were no phase-change restrictions at all, so 

students could navigate through phases both forwards and backwards as they 

pleased. Phase changes in this condition were allowed irrespective of participants’ 

domain knowledge.  

It was hypothesized that both restricting forward phase-changing based on 

acquired knowledge and reducing phase-change restrictions would increase 

participants’ performance success and their chances of successfully progressing 

through all phases. Two sets of pairwise comparisons were made to assess the 

influence of phase-change restrictions on the effectiveness of model progression. A 

comparison of performance success among the restricted and the semi-restricted 

condition served to establish the effects of forward phase-change restrictions. The 

comparison of the semi-restricted condition with the unrestricted condition 

assessed the advantages of backward phase-change restrictions.  

 

Method 

Participants  

The study’s initial sample consisted of 72 Dutch high-school students from a 

science track, aged 15-17. However, as 11 students were absent due to illness and 

timetable difficulties during one of the sessions, analyses were performed with 61 

participants. A review of school curricula and teacher statements showed that the 

charging of electrical capacitors, which was the topic of inquiry, had not yet been 
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taught in these students’ physics classes. A pretest was administered to confirm 

that participants were indeed domain novices; class-ranked pretest scores were 

used to assign students to either the restricted condition (n = 20), the semi-

restricted condition (n = 19), or the unrestricted condition (n = 22).  

 

Materials 

Inquiry task and learning environment 

All participants worked on an inquiry task about the charging of a capacitor in an 

electrical circuit. Their assignment was to examine and model the behaviour of 

each element in the electrical circuit presented in a simulation (i.e., a voltage 

source, two light bulbs, and a capacitor). Participants performed this task within a 

modified stand-alone version of the Co-Lab learning environment (van Joolingen 

et al., 2005) that stored all participants’ actions in a log file.  

Model order progression was implemented by dividing the task into three phases 

that involved increasingly specific reasoning. The initial phase only dealt with the 

model structure; students had to indicate the elements and the relationships 

between the elements (but not specify these relationships). The consecutive phases 

dealt with the model content; students had to examine the simulation and specify 

the relationships between the elements in their model qualitatively in Phase 2 and 

quantitatively in Phase 3. Changing the model structure by adding and deleting 

elements and relations (which was central to Phase 1) was still possible in these 

phases, although these relations now did need specification.  

Participants worked on the model in the model editor tool (see Figure 4.1) which 

allowed for system dynamics modelling. Over phases, students worked on the  
 

 

Figure 4.1. Screen capture of the model editor tool with the reference model. 
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same model, adding the new phase-specific demands to that model. As can be seen 

from Figure 4.1, such models have a graphical structure that consists of variables 

and relations. Variables are the constituent elements of a model and can be of three 

different types: variables that remain constant (i.e., constants), variables that 

specify the integration of other variables (i.e., auxiliaries), and variables that 

accumulate over time (i.e., stocks). Relations express propositions about how two 

or more variables interact. Participants’ could express the content of these 

propositions qualitatively (Phase 2) by selecting a pre-specified, qualitative relation 

from a drop-down menu, or quantitatively (Phase 3) by inserting scientific 

equations.  

Students could analyse their model output through a bar chart, table, or graph tool. 

As without specification of the relationships it is technically impossible to run the 

model in Phase 1, a bar chart tool was provided to analyse model structure. The 

bar chart displayed the number of correct and incorrect elements and relations in 

the model. The correctness of variables and relations was assessed by a software 

agent that compared the elements and relations in the students’ models to a 

reference model. The bar chart tool was available in Phase 1 only. The table and 

graph tool allowed students to analyse model content by comparing model and 

simulation output in a single window. Students could use the results of this 

comparison to adjust or fine-tune their model and thus their understanding of 

electrical circuits.  

An embedded help file tool contained the assignment and offered explanations of 

the operation of the tools in the learning environment. The help files contained no 

domain information on electrical circuits and capacitors as students should infer 

this knowledge from interacting with the simulation. The help files also informed 

participants about the specifics of the condition they were assigned to.  

 

Variants of the learning environment for the different conditions 

All conditions used the same instructional content (i.e., electrical circuits) that was 

divided into three phases according to the principles of model order progression. 

The three conditions differed only with regard to the restrictions to enter 

subsequent or previous phases. Table 4.1 presents an overview of the 

(im)possibilities of changing phases in each condition. 

Participants in the restricted condition could not return to previous phases, and 

could progress to the next phase only if their model was of sufficient quality. 

Students were free to attempt to go to next phases whenever they liked but a  
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Table 4.1  

Phase-change possibilities in each condition 

Condition 
Phase-change possibilities 

To next phase To previous phase 

Restricted 
Yes (but only if student’s 

model is of sufficient quality) 
No 

Semi-restricted Yes No 

Unrestricted Yes Yes 

 

software agent functioned as a gatekeeper, restricting phase changes in case the 

students’ model did not meet the requirements of a predefined rule set.  

The rule set was based on the similarity between the student’s model and the 

reference model. Minimal requirements for the transition from Phase 1 to Phase 2 

were the presence of all but one of the constant and stock elements (C, S, R1, R2, 

and charge), one auxiliary element (Vc, Vr, I, or R), and all relationship arrows 

between these elements. For the transition from Phase 2 to Phase 3, this rule set 

was extended with the requirement to have a correct, qualitative specification for 

all but one of the relation arrows.  

Participants in the semi-restricted condition were also prohibited to return to 

previous phases. However, they could progress to subsequent phases at will and 

without any restrictions imposed by the software agent. As such, the forward 

progression was completely learner controlled.  

The unrestricted condition had no phase-change restrictions at all. Participants in 

this condition were free to go to subsequent and previous phases as they deemed 

fit. As such, both the forward and backward progressions were completely learner-

controlled.  

 

Pretest  

A pretest consisting of eight open questions assessed participants’ prior knowledge 

of electrical circuits. Four questions addressed the meaning of key domain 

concepts (i.e., voltage source, resistance, capacitor, and capacitance), the other four 

items addressed the knowledge about the charging of a capacitor in an electrical 

circuit (i.e., Ohms law, Kirchoff’s law (including its two rules: the junction rule and 

the loop rule), and the behaviour of capacitors). As performance on the pretest was 

expected to be low, three simple filler items on the interpretation of numerical data 

were added to sustain students’ motivation during the test. These filler items were 

left out of the analysis. Participants’ answers to the eight questions were scored 
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using the rubric of Mulder et al. (2011), which allocates one point to each correct 

response. Inter-rater reliability reached .89 (Cohen’s κ). 

 

Procedure 

All participants engaged in two sessions: a 50-minute introduction and a 100-

minute experimental session. The time between sessions was one week maximum. 

During the introductory session, participants first completed the pretest, then 

received a guided tour of the Co-Lab learning environment, and finally completed 

a brief tutorial that familiarised them with the system dynamics modelling 

language and the operation of the modelling tool.  

During the experimental session, participants were presented with the inquiry task 

about the charging of a capacitor in an electrical circuit. Students had to examine 

and model the behaviour of each element in the electrical circuit as presented in 

the simulation in Co-Lab. Students were directed to begin by reading the 

assignment and to work individually. They were instructed about the different 

variants of the learning environments and were told to look at the help files to find 

out more about the condition they were assigned to. During the assignment, they 

could ask the experimenter for technical assistance only. Participants could stop 

ahead of time if they had completed the assignment.  

 

Coding and scoring  

All data were assessed from the log files. Variables under investigation were time 

on task, learning activities, phase-changes, and performance success. Time on task 

concerned the duration of the experimental session. Learning activities were 

defined by the number of times participants clicked the “Start” button in the 

simulation (simulation experiment) or model editor (model experiment). 

Regarding phase-changes, a distinction was made between phase-change attempts 

and actual phase-changes. Phase-change attempts were defined as the number of 

times participants expressed a desire to go to another phase, as indicated by a click 

on the “next phases” button in the learning environment. Actual phase-changes 

were the number of times these attempts were successful. Actual phase-changes 

were further classified as either forward or backward progressions.  

To assess performance success, both a model structure and a model content score 

were calculated. For participants’ final and intermediate (i.e., at phase-changes) 

models, a model structure score was computed in accordance with Manlove, 

Lazonder, and de Jong’s (2006) model coding rubric. This score represents the 

number of correctly specified variables and relations in the models. “Correct” was 
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judged from the reference model shown in Figure 4.1. One point was awarded for 

each correctly named variable; an additional point was given if that variable was of 

the correct type. Concerning relations, one point was awarded for each correct link 

between two variables and one point was awarded for the direction. The 

maximum model structure score was 38. The rubric’s inter-rater reliability for 

variables (Cohen’s κ = .74) and relations (Cohen’s κ = .92) was considered to be 

sufficient.  

As the model structure score leaves the quantitative aspects of the model 

unaddressed, a complementary final model content score was calculated. This 

score represented participants’ understanding of the physics equations that govern 

the behaviour of a charging capacitor (i.e., Ohms Law: I = V / R; resistances 

connected in parallel: 1 / Rt = 1 / R1 + 1 / R2; the potential difference in the circuit 

depends on the power source and the potential difference across the capacitor: ΔV 

= Vs - Vc; and the relationship between the potential difference across the capacitor 

and the amount of charge that gathers on the capacitor: C = Q / Vc). In a correct, 

fully-specified model these components are correctly integrated as represented in 

Equation 1:  

(dQ / dt) =  (Vs – Q / C) * (1 / R1 + 1 / R2)    (1) 

One point was awarded for each correctly specified part, leading to a four-point 

maximum score. A prior study (Mulder et al., 2010) found a 1.0 inter-rater 

reliability (Cohen’s κ).  

 

Results 

Table 4.2 summarizes the descriptive statistics for participants’ performance by 

condition. Univariate analysis of variance (ANOVA) on the pretest scores revealed 

no significant differences in prior knowledge between the conditions, F(2, 58) = 

0.67, p = .517. The time on task scores from Table 4.2 further show that, on average, 

participants in each condition spent 85 to 90 minutes working on the assignment. 

ANOVA indicated that the minor cross-condition differences in time were not 

statistically significant, F(2, 58) = 1.65, p = .201.  
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Table 4.2 

Summary of participants’ performance 

 

Restricted 

(n = 20) 

Semi-restricted 

(n = 19) 

Unrestricted 

(n = 22) 

M SD M SD M SD 

Pretest score 1.65 1.46 1.21 1.13 1.27 1.28 

Time on task (min.) 85.36 11.15 86.58 14.02 90.99 5.47 

       

Performance success       

Model content score 0.00 0.00 0.00 0.00 0.00 0.00 

Model structure score– variablesa 9.85 4.06 8.00 3.33 9.86 2.77 

Model structure score– relationsb 6.50 4.95 6.74 4.40 7.73 3.41 

       

Learning activities       

Number of simulation experiments 15.95 12.77 12.47 6.50 13.45 8.94 

Number of model experiments 63.70 38.40 68.47 51.25 63.59 34.64 
aMaximum score = 18. bMaximum score = 20. 

 

Performances success was assessed from the participants’ final models. The model 

content scores displayed in Table 4.2 implicate that none of the participants 

reached a correct, quantitative understanding of the physics equations. This could 

have been due to the low number of participants who reached phase 3 where the 

quantitative relations were addressed (see Table 4.3). Still, in absence of any 

variation in scores, the model content measure was left out of further analysis. 

Model structure scores were analysed by Multivariate Analyses of Variance 

(MANOVA). Results showed no significant difference between experimental 

conditions on this measure, V = 0.10, F(4, 116) = 1.55, p = .192. This means that, 

overall, participants in all three conditions performed equally successfully. To 

check the validity of these outcomes, the model structure scores in the semi-

restricted condition were compared with those of participants in the Mulder et al. 

(2011) study who worked on the same task and were supported by the same form 

of model order progression. These students had an average variable score of 6.82 

(SD = 2.51) and a mean relation score of 6.18 (SD = 3.21). MANOVA revealed no 

significant difference between these scores, V = 0.04, F(2, 44) = 0.98, p = .384, 

indicating that the quality of the students’ models in both studies were comparable 

in terms of variables and relations.   

Participants’ learning activities were defined by the number of simulation 

experiments and model runs. MANOVA  showed no significant difference  
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Table 4.3 

Mean model structure score at phase change by condition 

 Restricted Semi-restricted Unrestricteda 

 n M SD n M SD n M SD 

 From Phase 1 to Phase 2 

Model structure score (variables) 6 13.17 2.99 15 8.20 3.76 20 8.85 3.30 

Model structure score (relations) 6 11.17 3.55 15 6.47 4.26 20 6.05 4.49 

 From Phase 2 to Phase 3 

Model structure score (variables) 0 – – 5 6.80 3.56 9 9.67 3.24 

Model structure score (relations) 0 – – 5 4.00 2.83 9 7.89 3.41 
a Scores represent the mean model structure scores upon first entering a subsequent phase. 

 

between experimental conditions regarding these measures, V = 0.03, 

F(4, 116) = 0.39, p = .813. This means that the different phase change restrictions had 

no significant effect on the number of simulation experiments and model runs 

participants performed.  

Analysis of the learning process addressed the issue of whether and how phase-

change restrictions influenced participants’ attempts to visit subsequent and 

previous phases. Participants in the restricted condition, who could only progress to 

a subsequent phase if sufficient knowledge had been acquired, tried to change 

phases 5.21 times on average (SD = 7.31; Range: 0-27). (One participant had 81 

unsuccessful phase change attempts and was left out of this analysis). Access to 

Phase 2 was granted on six occasions, and no participants in this condition reached 

Phase 3. MANOVA confirmed that the six participants who progressed to Phase 2 

(variables: M = 13.17, SD = 3.00; relations: M = 11.17; SD = 3.55) performed better 

than the participants who were not granted access to Phase 2 (variables: M = 8.43, 

SD = 3.65; relations: M = 4.43, SD = 3.92), V = 0.45, F(2, 17) = 7.02, p = .006. 

Subsequent univariate ANOVA’s showed that the participants that did progress to 

Phase 2 performed better both on the variables aspect F(1, 18) = 7.78, p = . 012 and 

on the relations aspect F(1, 18) = 13.09 p = .002. 

Participants in the semi-restricted condition were free to progress to subsequent 

phases. Fifteen of the 19 participants in this condition entered Phase 2, and 5 of 

them went on to Phase 3. Participants in the unrestricted condition could enter 

subsequent and previous phases as they pleased. Two out of the 22 participants 

never progressed to Phase 2, and 4 out of the remaining 20 participants never 

made use of the opportunity to regress to a previous phase. This means that 16 

participants utilized the unrestricted phase-change possibilities as intended. These 

16 participants changed phases 7.94 times on average (SD = 4.48; Range: 2-19).  
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Approximately half of these attempts (54%) were progressions, and 46% were 

regressions. Most phase-changes (79%) occurred between Phases 1 and 2.  

Table 4.3 summarizes the number of participants who progressed through phases. 

There was a significant association between the type of restriction and whether or 

not participants reached Phase 2, χ2 (2, N = 61) = 19.36, p = .006. Participants from 

the unrestricted condition were most likely to enter Phase 2. Based on the odds 

ratio, the chance that participants would enter Phase 2 was 2.67 times higher if they 

were in the unrestricted condition than in the semi-restricted condition, and 8.75 

times higher if they were in the semi-restricted condition than in the restricted 

condition. The transition from Phase 2 to Phase 3 was independent of the type of 

phase change restriction, χ2 (2, N = 41) = 4.16, p = .125. 

Table 4.3 also shows the mean model structure scores at each phase change. 

MANOVA with both model structure aspects (i.e., variables and relations) as 

dependent variables produced a significant effect of condition at the first phase-

change point (Phase 1 to Phase 2), V = 0.23, F(4, 76) = 2.50, p = .050, but not at the 

second (Phase 2 to Phase 3), V = 0.28, F(2, 11) = 2.15, p = .163. Subsequent univariate 

ANOVAs indicated that, at the first phase-change point, phase-change restrictions 

significantly affected the number of correct variables in the students’ model, 

F(2, 38) = 4.72, p = . 015, and the quality of the relations between these variables, 

F(2, 38) = 3.43, p = .043. Planned contrasts revealed that the restricted participants 

scored higher on both aspects (variables: t(38) = 4.97, p = .005; relations: 

t(38) = 4.70, p = .029) than the semi-restricted participants. A comparison of the 

semi-restricted participants with the unrestricted participants did not indicate 

significant differences (variables: t(38) = 0.65, p = .583; relations: t(38) = -

0.42, p = .778). 

Discussion 

Prior research showed that model order progression promotes inquiry learning 

(Mulder et al., 2011). The aim of the present study was to determine whether the 

use of either more liberal or more strict requirements to enter model progression 

phases can further enhance this type of support. Two alternatives to the ‘standard’ 

form of model order progression (i.e., semi-restricted condition) were examined: 

restricting phase changing until students acquire sufficient domain knowledge 

(restricted condition), and allowing free navigation through the phases – both 

forwards and backwards – (unrestricted condition).  

As in the Mulder et al. (2011) study, students in the semi-restricted condition were 

allowed to progress to subsequent phases at will, but could not return to a 

previous phase. Performance success in the semi-restricted condition was 



Influence of phase change restrictions 

 73 

comparable to that in the Mulder et al. study, which validates the use of this 

condition as a comparison condition in the present research. The main conclusion 

of this study is that both alternative phase-change restrictions have no significant 

influence on participants’ overall performance success as indicated by the models 

they created. Nonetheless, even though phase-change restrictions were not as 

beneficial as hypothesized, they did influence students’ performance.  

Students in the restricted condition were prohibited from progressing to the next 

phase until they had reached sufficient understanding, and could not return to a 

previous phase. Restricting phase-changing to subsequent phases based on 

intermediate performance success was presumed to enhance the effectiveness of 

model progression as only students with sufficient knowledge would progress to 

subsequent phases. This was partially confirmed by the results: the restricted 

students often attempted to progress to Phase 2 with little knowledge as judged by 

the software agent. This suggests that the students misconceived their knowledge 

as being sufficient to progress to the next phase. Their phase-change attempts were 

blocked by the software agent until a knowledge benchmark was reached. As a 

result, the restricted students who managed to progress to Phase 2 had more 

elaborate models than those who did not. A comparison with the semi-restricted 

participants further revealed that the restricted students were less likely to enter 

Phase 2. Still, restricted students who entered Phase 2 did so with more elaborate 

models than the semi-restricted participants. The alleged advantage of 

performance-based phase-change restrictions is that it increases new phases’ 

manageability, as it restricts students from progressing until they have sufficient 

knowledge. Unfortunately however, none of the participants in the restricted 

condition reached Phase 3, thus this study could not confirm this advantage.  

These findings seem to indicate that performance-based phase-change restrictions 

do not increase the effectiveness of model progression. An alternative 

interpretation, however, is that the effectiveness of these restrictions failed to show 

because of time constraints. Imposing performance standards inevitably increased 

students’ time on task in Phase 1. This is actually a common problem in 

instructional approaches that restrict students based on their performance, see for 

example Bloom’s (1968) work on mastery learning (Arlin, 1984). It thus seems 

plausible that performance-based restrictions can enhance model order 

progression if students are allowed more time to complete the task. Future 

research could continue along these lines and investigate whether without these 

time constraints, restricting phase changing based on performance will increase 

performance success.  

A related question for future research would be how restrictive the software agent 

should be. The software agent in this study was rather strict: it granted access to 
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subsequent phases only if all but one of the new phases’ requirements were met. 

This appeared to delay progressions for quite a long time. A more permissive 

software agent might enable faster progression through the phases while 

maintaining manageability of the learning content. Striking a balance between 

these two issues is an interesting challenge for future studies.  

Students in the unrestricted condition were allowed to progress to subsequent 

phases as well as regress to previous phases as they saw fit. This appeared to be a 

more effective way to ensure progression through all phases. Compared to the 

semi-restricted condition, students in the unrestricted condition were nearly three 

times more likely to reach Phase 2. Also, more students from the unrestricted 

condition reached Phase 3, but this difference was not significant. However, the 

quality of the unrestricted participants’ intermediate models did not differ from 

the quality of the semi-restricted participants’ intermediate models. This suggests 

that even for the unrestricted students –who knew that they could undo a phase-

change any time– each phase change was a conscious choice. 

On average, students navigated between the three phases approximately eight 

times, most often between Phases 1 and 2. Nearly half of these phase changes were 

regressions in phases, suggesting that the students acknowledged a knowledge 

gap for the higher phase and regressed to a previous phase to remediate it. Most 

students who used the freedom to regress to previous phases also changed their 

model structure, which most often lead to improvements to the model. However, 

these improvements were not substantial enough to yield an overall cross-

condition effect on performance success.  

The effects of free navigation has also been studied in hypermedia research 

regarding the effects of learner control. Among other things, this research lets 

learners determine the order in which they would like to access different 

information units and decide over the pace of information presentation, including 

returning to previous information units (alike the possibility to regress to previous 

phases for the unrestricted condition) (Scheiter & Gerjets, 2007). Even though 

increased learner control is considered a major advantage of hypermedia learning, 

Scheiter and Gerjets conclude that empirical evidence supporting this claim is still 

scant (cf. Dillon & Gabbard, 1998; Johnson, Perry, & Shamir, 2010). It can be 

hypothesized that novice learners lack the skills to navigate hypermedia 

environments. Although the present study provided the students with an inherent 

implicit learning sequence, the increased learner control also did not lead to higher 

performance success.  

As for practical implications, the results of this study should be regarded in 

perspective with previous findings on model progression. The success of model 

progression depends on the way complexity is gradually increased (Mulder et al., 
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2011). However, even when model order progression is applied, students’ 

performance on inquiry learning tasks combined with modelling leaves room for 

improvement. That is, only few students progressed through all phases, and their 

final models demonstrate an incomplete understanding of the task domain. 

Unfortunately, both alternative phase-change restrictions explored in this study 

did not adequately settle these problems for all students. It can therefore be 

concluded that model order progression should be supplemented with additional 

support. 

This additional support could take several forms. Prior research failed to 

demonstrate a performance increase when model progression was complemented 

with assignments (de Jong et al., 1999; Swaak et al., 1998). Future research should 

investigate which additional support is synergistic rather than redundant when 

combined with model order progression. Students’ spontaneous reactions during 

this study suggest that worked examples qualify as good candidate for this 

additional support.  Students’ appeared to lack confidence in their approach to the 

task and as a result they lost a lot of time figuring out what to do and applying 

unproductive strategies. Worked examples have long since been found effective in 

initial skill learning for problem-solving tasks (e.g. Atkinson, Derry, Renkl, & 

Wortham, 2000; Paas & van Merriënboer, 1994; Sweller & Cooper, 1985) and more 

recently the application of worked examples has effectively been expanded to 

more complex learning tasks (Hilbert & Renkl, 2009; Hilbert, Renkl, Kessler, & 

Reiss, 2008; van Gog, Paas, & van Merriënboer, 2008). It would be interesting to 

investigate the instructional efficacy of worked examples additional to model order 

progression in an inquiry learning task combined with modelling.  

To conclude, the results of this study indicate that phase-change restrictions 

influence students’ behaviour and performance on an inquiry learning task 

combined with modelling. However, this influence is too small to enhance overall 

performance for all students. Future research should explore the effects of 

additional support.  
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Chapter 5 

 

The added value of worked examples to 

support students on an inquiry learning task 

combined with modelling1 
 

Abstract 

Recent studies on the effect of model progression (i.e., gradually increasing a tasks’ 

complexity) have shown that students need additional support on an inquiry 

learning task combined with modelling. This study investigated the effect of 

heuristic worked examples as additional support. High-school students in the 

experimental condition (n = 46) could consult heuristic worked examples that 

explained what activities were needed and how they should be performed. 

Students in the control condition (n = 36) did not receive this support. Results 

showed that students in the experimental group exhibited more proficient inquiry 

and modelling behaviour, performed better, but did not learn more than their 

control counterparts. 

                                                 

1 This chapter is based on: Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2012). The 

added value of worked examples to support students on an inquiry learning task combined 

with modelling. Manuscript in preparation for publication. 
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Introduction 

Recent meta-analyses conclude that inquiry learning can benefit students and lead 

to superior student performance than more direct forms of instruction (Alfieri, 

Brooks, Aldrich, & Tenenbaum, 2011; Minner, Levy, & Century, 2010). However, 

these meta-analyses also conclude that these benefits only hold when students are 

supported during their inquiry activities. Students need this support to 

compensate for their modest inquiry skills or prior knowledge deficits. De Jong 

and Van Joolingen’s (1998) review revealed a broad variety of skill deficiencies in 

simulation-based inquiry learning. Among the most pertinent problems are 

students’ inability to infer hypotheses from data, design conclusive experiments, 

engage in efficient experimentation behaviour, and attend to incompatible data. 

Similar problems arise when students create computer models of scientific 

phenomena. Hogan and Thomas (2001), for instance, noticed that students often 

fail to engage in dynamic iterations between examining output and revising 

models, and Stratford, Krajcik, and Soloway (1998) observed a lack of persistence 

in debugging models to fine-tune their behaviour.  

Mulder, Lazonder, and de Jong (2010) examined whether these results generalize 

to a learning task where inquiry and modelling are combined. They had high 

school students infer the model underlying a simulation of an electrical circuit 

through systematic experimentation, and rebuild this model to express their 

understanding of the variables and relations in the simulation. Students could 

verify their knowledge of the electrical circuit by running their model and 

weighting its output against prior knowledge or data from the simulation. This 

study indicated that domain novices are quite capable of identifying relevant 

variables, but have difficulty inferring how these variables are related. Instead of 

gradually working toward a full-fledged scientific equation to specify a 

relationship, novices tried to induce and model these equations from scratch, 

which proved ineffective given their lack of prior domain knowledge. These 

findings suggest that students could benefit from support that prevents them from 

‘jumping the gun’ and better attunes their inquiry and modelling activities to their 

level of domain knowledge (cf. Quintana et al., 2004).  

This support can be offered in a non-intrusive way by organizing the learning task 

according to a simple-to-complex sequence that matches the students’ increasing 

levels of domain understanding. This type of task structuring was first introduced 

by White and Frederiksen (1990), who termed it ‘model progression’. Model 

progression was found to lead to higher performance success in some studies 

(Alessi, 1995; Eseryel & Law, 2010; Rieber & Parmley, 1995; Swaak, van Joolingen, 

& de Jong, 1998), but other studies report less favourable results (de Jong et al., 
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1999; Quinn & Alessi, 1994). These differential effects might be attributable to the 

slightly different configurations of the simple-to-complex sequencing. Some 

studies had students engage in increasingly specific reasoning about the task 

content (i.e., model order progression) whereas students in other studies engaged 

in specific reasoning about increasingly more elaborate task content (i.e., model 

elaboration progression). Mulder, Lazonder, and de Jong (2011) compared both 

types of model progression on inquiry learning task combined with modelling. 

Students who were supported by either type of model progression outperformed 

students from a unsupported control condition. A comparison among the two 

model progression variants further showed that students who investigated and 

created increasingly more specific models outperformed students who investigated 

and created increasingly more elaborate models.  

However, even students in the best-performing model progression group 

produced mediocre models. One reason could be that few students completed all 

three phases of the task sequence. Analysis of the students’ learning activities and 

models revealed that many students progressed from the first to the second phase, 

but few went on to the third -and final- phase. Those who got stuck in the second 

phase entered this phase with a rather simple model, which probably provided an 

insufficient basis for the complex task at hand. In an attempt to optimize model 

progression, the study described in Chapter 4 explored the effects of either 

broadening or narrowing students’ possibilities to choose their own learning paths 

through the pre-defined task sequence. Neither of these adjustments enhanced the 

quality of the students’ models, and observation during the lessons revealed that 

many students performed the inquiry learning task ineffectively and inefficiently. 

These findings suggest that students might need a more explicit account of what 

the activities in each model progression phase entail and how they should be 

performed.  

Such support could take the form of worked examples which are a proven fruitful 

means to enhance problem-solving performance (e.g., Paas & van Merriënboer, 

1994; Sweller & Cooper, 1985). Worked examples essentially include a problem 

statement, a step-by-step account of the procedure to solve the problem, and the 

final solution. Worked examples have traditionally been applied to learn to solve 

well-structured problems that have a straightforward algorithmic solution process. 

Research has shown that studying a series of worked examples, either as 

preparation to or substitute of problem-solving practice, is more effective than 

conventional, unsupported problem solving (see, for a review, Atkinson, Derry, 

Renkl, & Wortham, 2000; Sweller, Ayres, & Kalyuga, 2011). 

However, the effectiveness of problem-solving support methods does not 

necessarily generalize to inquiry learning tasks. Inquiry and modelling are 
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recursive processes in which the scientific reasoning skills of hypothesizing, 

experimenting, and evidence evaluation are performed repeatedly. The nature of 

the hypotheses, the way they are examined, and the outcomes of these 

investigations all determine what would be the next logical step to induce and 

model the characteristics of the topic at hand (Klahr & Dunbar, 1988; White, 

Shimoda, & Frederiksen, 1999). Capturing this complex cognitive activity in a 

fixed, algorithmic sequence of action steps would neither be possible nor do justice 

to the true nature of the inquiry and modelling process, and presumably cause 

students to develop a limited understanding of the task content.  

Hilbert and colleagues acknowledged this limitation of traditional worked 

examples, and proposed a variant that can be applied in non-algorithmic problem-

solving situations (Hilbert & Renkl, 2009; Hilbert, Renkl, Kessler, & Reiss, 2008). 

These so-called heuristic worked examples do not emphasize the specific action 

sequence students should follow to solve a problem, but display the heuristic 

reasoning underlying the choice and application of this action sequence. This shift 

in focus has broadened the application of worked examples from well-structured, 

algorithmic problem-solving tasks to more ill-structured, and hence complex 

learning tasks. Recent reviews of worked-examples research have demonstrated 

that heuristic worked examples can effectively be applied in a variety of domains 

such as mathematical proving, concept mapping, and second language learning 

(Renkl, Hilbert, & Schworm, 2009; Sweller et al., 2011).  

Heuristic worked examples also hold promise to support students’ inquiry and 

modelling activities. Both processes are iterative by nature and require students to 

consider previously performed activities and their results to decide which actions 

to perform next. These decisions were found to be problematic because students 

have an insufficient understanding of the inquiry and modelling process (Mulder 

et al., 2011). Heuristic worked examples could help alleviate this problem by 

exemplifying how students can move in iterative cycles from hypothesis 

generation through experimentation to evidence evaluation within each model 

progression phase.  

 

Research design  

The purpose of the present study was to establish the instructional efficacy of 

heuristic worked examples in an inquiry learning environment with modelling 

facilities. This study utilized a between-subject design with two conditions. The 

learning environment in both conditions contained model order progression so 

that students had to build increasingly more specific models. In the experimental 

condition, heuristic worked examples were available for each of the three model 

progression phases. For each phase, the worked examples demonstrated the 
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heuristic strategies students should apply to choose and perform their actions. 

Students in the control condition received no such support.  

The following research hypotheses were investigated: 

1. Students who are supported with heuristic worked examples exhibit a 

more appropriate sequence of learning activities than students who are not 

supported with worked examples.  

2. Students who are supported with heuristic worked examples perform 

better (i.e., create better models) than students who are not supported with 

heuristic worked examples. 

3. Students who are supported with heuristic worked examples learn more 

than students who are not supported with heuristic worked examples. 

 

Method 

Participants  

Participants were 82 Dutch high school students from a science track, aged 15-17. A 

review of school curricula showed that the charging of capacitors, which was the 

topic of inquiry, was not yet taught in these students’ physics classes. The students’ 

teachers confirmed that this was the case. A prior knowledge test (see the section 

on knowledge tests) was administered to substantiate that participants were 

indeed domain novices; class-ranked prior knowledge test scores were used to 

assign students to either the worked example condition (n = 46) or the control 

condition (n = 36).  

 

Materials 

Inquiry task and learning environment 

All participants worked on an inquiry task about the charging of a capacitor in an 

electrical circuit. Their assignment was to examine and model the influence and 

interactions of each element in the electrical circuit presented in a simulation. 

Participants performed this task within a modified stand-alone version of the Co-

Lab learning environment (van Joolingen, de Jong, Lazonder, Savelsbergh, & 

Manlove, 2005). 

The learning environment housed a simulation tool containing an electrical circuit, 

a voltage source, two light bulbs, and a capacitor (see Figure 5.1, left pane). 

Participants could experiment with this simulation to find out how these  

 



Chapter 5 

84 

  

Figure 5.1. Screen capture of simulation tool (left pane) and the model editor tool with the reference 

model (right pane). 

 

components behave. When they had unravelled the model underlying the 

simulation, participants could use the model editor tool to represent their acquired 

understanding in an runnable system dynamics model. As shown in Figure 5.1 

(right pane), these models have a graphical structure that consists of variables and 

relations. Variables are the constituent elements of a model and relations define 

how two or more variables interact. Students could experiment with both the 

simulation and the model editor. The output of these experiments could be 

analysed through a bar chart, table, or graph tool.  

An embedded help file tool contained the assignment and offered explanations of 

the operation of the tools in the learning environment. The help files contained no 

domain information on electrical circuits and capacitors. 

Model order progression was implemented by dividing the modelling task into 

three subsequent phases. In Phase 1, students had to indicate the model elements 

(variables) and which ones affected which others (relationships) – but not how they 

affected them. In Phase 2, students had to provide a qualitative specification of 

each relationship (e.g., if resistance increases, then current decreases). In Phase 3, 

students had to specify each relationship quantitatively in the form of an equation 

(e.g., I = V / R). A more elaborate description of the model is given in Chapter 2.  

 

Worked examples  

Heuristic worked examples (hereafter: worked examples) were designed for each 

model progression phase. Research on the presentation format of worked 

examples advocates presenting examples as an action sequence over time to foster 

student learning (Lewis & Barron, 2009; Lusk & Atkinson, 2007). The worked 
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examples in the present study therefore came in the form of an annotated 

streaming video that contained a dynamic screen capture of an anonymous person 

performing an inquiry and modelling task. This task was situated in a different, yet 

familiar context: the inflow and outflow of money. This context was chosen 

because it was known to the students (it was also used in the introductory session 

to familiarize them with the learning environment), and familiarity with the 

exemplifying domain was found pivotal to skill acquisition from worked examples 

(Renkl et al., 2009). 

Seven worked examples were created: one general introductory example to 

reacquaint students with the exemplifying domain, and two specific examples for 

each model progression phase. The latter examples demonstrated the heuristic 

strategies students should apply to cycle effectively through the processes of 

hypothesis generation, experimentation, and evidence evaluation. In each model 

progression phase, one worked example displayed these strategies for the 

students’ inquiry activities with the simulation; a second example concerned the 

use of these strategies during modelling. Both worked examples together showed 

how to coordinate simulation, model, and data-inspection activities. 

More specifically, the simulation worked example for Phase 1 demonstrated how 

students could experiment with the simulation to identify relevant variables and 

find out which variables are related. The modelling example for this phase build 

on this information by demonstrating how variables can be created and linked in a 

model sketch, and how feedback on this sketch leads to new simulation 

experiments, new data, and refinements to the model. Likewise, the simulation 

example in Phase 2 displayed how students could induce the nature of the 

relationship in their model from simulation experiments; the modelling example 

explained how the newly-discovered relationships are incorporated in a qualitative 

model. In Phase 3, the simulation example demonstrated the reasoning involved in 

inferring physics equations from simulation data, and the modelling example 

displayed how these equations can be included and tested in a quantitative model.  

The worked examples were presented on a website that was available only to 

students in the experimental condition. All seven worked examples were accessible 

during the entire experimental session, regardless of the model progression phase 

a student was in. The names of the worked examples reflected their content (e.g., 

“Phase 1, simulation”) so as to indicate to students which worked example was 

relevant to them at that moment. Participants’ interaction with the website’s movie 

player that showed the worked example videos (e.g., pressing the play and stop 

button) were stored in a log file.  
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Knowledge tests 

Two tests were used to assess participants’ knowledge of electrical circuits: a prior 

knowledge test and a posttest that contained 8, respectively 14 items.  

In the prior knowledge test, four open-ended questions addressed the meaning of 

key domain concepts (i.e., voltage source, resistance, capacitor, and capacitance), 

and four open-ended questions addressed the physics equations that govern the 

behaviour of the charging of a capacitor in an electrical circuit (i.e., Ohms law, 

Kirchoff’s law (including its two rules: the junction rule and the loop rule), and the 

behaviour of capacitors). As performance on the prior knowledge test was 

expected to be low, three simple filler items on the interpretation of numerical data 

were added to sustain students’ motivation during the test. These filler items were 

left out of the analysis. Participants’ answers to the questions were scored using a 

rubric that allocated one point to each correct response. The Cohen’s κ inter-rater 

reliability of this rubric was assessed by Mulder et al. (2011) and reached .89.  

The posttest aimed to assess learning outcomes, and differed from the prior 

knowledge test in two respects. First, all eight items from the prior knowledge test 

were maintained, but rephrased in modelling terms in order to establish maximum 

resemblance with the learning task. Second, to ensure that the posttest covered the 

contents of all three model progression phases, six multiple-choice items were 

added to gauge students’ qualitative understanding of the task. A rubric was 

developed to score participants’ answers to the 14 posttest questions, and one 

point was allocated to each correct response. Two raters used this rubric to score 

the open-ended questions of a randomly selected set of 20 students: the inter-rater 

reliability was .96 (Cohen’s κ). 

 

Procedure 

All participants engaged in three sessions that were scheduled within one week. 

However, due to organizational difficulties, one class (15 students) had a three-

week break between the first and second session. Their second session was 

therefore preceded by a 10-minute (extra) recapitulation of the first session’s 

activities. As student allocation to experimental conditions occurred within each 

class, this should not have influenced the study’s results.    

During the introductory session, participants first filled out the prior knowledge 

test, then received a guided tour of the Co-Lab learning environment, and finally 

completed a brief tutorial that familiarized them with the system dynamics 

modelling language and the operation of the modelling tool.  

The second session started with a brief reminder that the students would work in a 

learning environment where the assignment was split into phases. The students 
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were told that they could progress through these phases at their own pace, but 

could not return to a previous phase. They were encouraged to progress through 

all three phases. Furthermore, students in the experimental condition were 

instructed to access the website where they could watch the worked example 

videos. After the instructions, students worked on the assignment for 

approximately 90 minutes. They could stop ahead of time if they had completed 

their assignment.  

In the final session students filled out the posttest. Students were not told in 

advance that they were to take this test so as to increase the likelihood that the test 

scores would represent the knowledge gained during the experiment. 

 

Coding and scoring 

Variables under investigation were time on task, learning paths, learning activities, 

performance success, and learning outcomes. The first three measures were 

assessed from the log files. Time on task concerned the duration of the second 

session; learning paths were indicated by the students’ advancement through the 

three model progression phases. To gain insight into students’ learning activities, 

students’ use of tools in the learning environment was examined. All students 

could engage in activities with the simulation, the model editor, the data inspection 

tools (i.e., bar chart, table, and graph), and the help file tools. Students in the 

experimental condition had the additional option of viewing the worked example 

videos. As each tool was represented in a separate window, the frequency and 

duration of these learning activities was assessed from the log files. A specific 

inquiry activity that was assessed was students’ experimenting behaviour. This 

was defined by the number of times participants clicked the “Start” button in the 

simulation (simulation experiment) or model editor (model experiment).  

Performance success scores were assessed from the participants’ final models. Both 

a model content and a model structure score was calculated. The model content 

score represented participants’ understanding of the four physics equations that 

define the behaviour of a charging capacitor (i.e., Ohms law, Kirchoff’s law 

(including its two rules: the junction rule and the loop rule), and the behaviour of 

capacitors). One point was awarded for each correctly specified equation, leading 

to a four-point maximum score. A prior study (Mulder et al., 2010) found a 1.0 

inter-rater reliability (Cohen’s κ).  

The model structure score was computed in accordance with Manlove, Lazonder, 

and de Jong’s (2006) model coding rubric. This score represents the number of 

correctly specified variables and relations in the models. “Correct” was judged 

from the reference model (see Figure 5.1). One point was awarded for each 
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correctly named variable; an additional point was given if that variable is of the 

correct type. Concerning relations, one point was awarded for each correct link 

between two variables, and one point was awarded for the direction of the effect. 

The maximum model structure score was 38. In a prior study (Mulder et al., 2010) 

the rubric’s inter-rater reliability for variables (Cohen’s κ = .74) and relations 

(Cohen’s κ = .92) were assessed, and considered to be sufficient.  

Learning outcomes were indicated by students’ scores on the posttest; the 

maximum score was 14 points.  

Results 

Table 5.1 summarizes the descriptive statistics for participants’ performance by 

condition. Univariate analysis of variance (ANOVA) revealed no significant 

differences in prior knowledge between the conditions, F(1, 80) = 0.03, p = .866.  

Most students from the experimental condition (n = 40) viewed at least one worked 

example. These students started a worked-example video 10 times on average 

(SD = 6.42) and watched them for a total of 13 minutes (SD = 12). One-sample t-test  

 

Table 5.1 

Summary of participants’ performance 

 

Worked examples 

(n = 46) 

Control 

(n = 36) 

M SD M SD 

Prior knowledge test scorea 1.48 1.28 1.53 1.36 

Posttest scoreb,c 2.84 2.02 2.97 1.70 

Time on task (min.) 80.48 9.85 78.25 14.21 

     

Performance success     

Model content scored 0.00 0.00 0.00 0.00 

Model structure score–variablese 10.46 3.88 7.39 2.98 

Model structure score–relationsf 8.17 4.94 4.89 4.62 

     

Learning activities     

Number of simulation 

experiments 
26.11 17.56 14.39 10.39 

Number of model experiments 67.09 33.91 60.06 48.51 
a Maximum score = 8.  b Maximum score = 14.  c Three students from the worked examples condition and 

two from the control condition were absent during the posttest.  e Maximum score = 18.  f Maximum 

score = 20. 
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showed that the mean number of worked example views differed significantly 

from zero, t(39) = 9.96, p < .001, which confirmed the difference in treatment across 

the two conditions. Despite these additional efforts, the overall time on task was 

comparable in both conditions, F(1, 80) = 0.70, p = .404. 

Inspection of students’ learning paths showed that 72% of the worked example 

students progressed from the first to the second phase (n = 33) and 30% went on to 

the third phase (n = 14). In the control condition, 56% of the students progressed 

from the first to the second phase (n = 20) and 42% reached the third phase (n = 15). 

Binomial tests revealed that the percentage of students who entered Phase 2 was 

significantly higher in the worked example condition, z = 2.06, p = .037, whereas the 

percentage of students who continued to Phase 3 was higher in the control 

condition, z = –4.12, p < .001. 

Table 5.2 shows the frequency and duration of the learning activities in both 

conditions. As these are inter-dependent measures, separate univariate analyses 

were performed. To control for the overall Type I error rate increase with multiple 

significance tests, a Bonferroni correction (α = .01) was applied. The ANOVAs 

indicated that students from the worked example condition engaged more often in 

simulation activities, F(1, 80) = 10.72, p = .002, and data inspection activities, F(1, 80) 

= 8.49, p = .005. Both conditions did not differ in the number of model activities, 

F(1, 80) = 4.45, p = .038, nor in the number of times they consulted the help files, 

F(1, 80) = 1.21, p = .274.  

 

Table 5.2  

Mean frequency of and percentage of time spent on learning activities 

 

Worked example 

(n = 46) 

Control 

(n = 36) 

M SD M SD 

Frequency     

Simulation  24.20 15.27 14.53 10.13 

Model editor  64.54 29.60 50.17 31.90 

Data-inspection 61.85 31.22 41.50 31.61 

Help file 2.91 2.91 4.06 6.23 

     

Relative time spent (%)     

Simulation  10.79 6.14 8.77 5.21 

Model editor  58.83 11.16 75.40 7.89 

Data-inspection 18.36 8.22 13.34 6.13 

Help file 2.03 2.28 2.49 3.25 
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Furthermore, differences between conditions were found on the relative time 

students spent on these inquiry and modelling activities. As these too are inter-

dependent measures, separate univariate ANOVAs with a Bonferroni correction 

(α = .01) were performed. Results indicated that the worked example students 

spent relatively more time on data inspection, F(1, 80) = 9.37, p = .003, whereas the 

control condition students spent more time with the model, F(1, 80) = 57.00, 

p < .001. No statistical differences were found for simulation activities, 

F(1, 80) = 2.50, p = .118, and help file seeking activities, F(1, 80) = 0.58, p = .450. 

While using the simulation and model editor tool, students could perform 

experiments to test their hypotheses. Table 5.1 shows the number of simulation 

and model experiments students performed. Using Pillai’s trace, MANOVA 

produced a significant effect for condition on the number of simulation and model 

experiments, V = 0.14, F(2, 79) = 6.25, p = .003. Subsequent univariate ANOVAs 

revealed that students in the worked example condition performed significantly 

more simulation experiments, F(1, 80) = 12.57, p = .001, but as many model 

experiments, F(1, 80) = 0.60, p = .443, as students from the control condition. 

As the worked examples showed how to integrate simulation, model, and data- 

inspection activities, it is also interesting to examine successions of learning 

activities. Figure 5.2 depicts students’ navigation among the simulation, the model, 

data-inspection, and the help seeking tools (i.e., help files and worked examples). It 

can be seen that the students who received worked example support navigated 

among the activities differently, as was confirmed by MANOVA, using Pillai’s 

trace, V = 0.57, F(6, 75) = 11.03, p < .001. (As the control condition had no access to  

 
 

Figure 5.2. Navigation patterns among the tools in the learning environment. Data for the worked 

example condition appears in boldface; data for the control condition in italics. To enhance readability, 

only transition lines with a frequency of over 2 % are depicted. 
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the worked examples, this option was excluded from this analysis). Subsequent 

univariate ANOVAs revealed that worked example students navigated more often 

among the data-inspection and simulation tools, F(1, 80) = 13.68, p < .001, whereas 

the control students navigated more often among the help files and model editor 

tools, F(1, 80) = 6.78, p = .011 and between the model editor and simulation tools, 

F(1 ,80) = 5.83, p = .018. No differences were found for navigation between the data-

inspection and help file tools, F(1, 80) = 2.48, p = .119, the help files and simulation 

tools, F(1, 80) = 1.27, p = .263, and the data-inspection and model editor tools, 

F(1, 80) = 0.74, p = .392.  

Analysis of students’ models suggests that the worked examples enhanced 

students’ performance success. Using Pillai’s trace, MANOVA showed a 

significant effect for condition on the variable and relations aspect of the model 

structure score, V = 162, F(2, 79) = 7.65, p = .001. Subsequent univariate ANOVAs 

revealed significant worked example effects on both the variables, F(1, 80) = 15.38, 

p < .001, and the relations aspect, F(1, 80) = 9.45, p = .003. The model content scores 

displayed in Table 5.1 implicate that none of the participants reached a correct, 

quantitative understanding of the physics equations. As there was no variation in 

scores, the model content measure was not analysed further.  

The posttest was used to establish learning outcomes. Univariate ANOVA on the 

mean posttest scores from Table 5.1 revealed no significant difference between the 

two conditions, F(1, 75) = 0.10, p = .759. 

 

Discussion 

The present study addressed the effectiveness of worked examples in an inquiry 

learning environment with modelling facilities. The study compared the learning 

activities, performance, and learning outcomes among students who either were or 

were not supported by worked examples that provided an explicit account of what 

the activities in each model progression phase entail, and how they should be 

performed. The worked examples were expected to make the students’ inquiry and 

modelling activities more effective and efficient, and hence lead to higher 

performance success and learning outcomes. 

In general, results showed a positive effect of worked examples. The worked 

example students spent a substantial amount of their time on task viewing the 

worked examples, suggesting that students appreciated the additional instruction 

on how to coordinate and perform the inquiry and modelling activities. As 

predicted by the first research hypothesis, these instructions influenced the 
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students’ learning activities, as was indicated by the frequency, sequence, and 

duration of tool use.  

Students could acquire an initial knowledge base by experimenting with the 

simulation tool. The worked example students used this tool more efficiently in 

that they conducted more experiments in the same amount of time. Furthermore, 

in order for experiments to lead to knowledge acquisition, it is imperative that data 

from these experiments is inspected in order to reach conclusions. This activity 

sequence was emphasized by and illustrated in the worked examples, and 

observed more often in the experimental condition. Compared to the control 

students, the worked example students more often navigated between the 

simulation and data-inspection tools, and spent more of their time on the data-

inspection tools.  

The newly acquired understanding could be tested by experimenting with the 

model editor tool. The worked example students used this tool more efficiently. 

They visited the model editor tool as often as the control students, conducted the 

same number of model experiments, but needed relatively less time for these 

experiments. The navigation patterns further show a difference in help seeking 

behaviour. The control students often navigated between the help-files and the 

model, whereas the worked example students sought help from the worked 

example videos. Additionally, compared to the worked example students, the 

control students more often navigated between the model editor and simulation. 

Whether this navigation pattern is sensible, depends on the direction of the 

navigation. Going from the model editor to the simulation can be helpful, for 

instance when students have finished a part of their model or experience a 

knowledge gap. However, navigating directly from the simulation to the model 

editor tool makes little sense because students would then skip the data inspection 

part where they can reach conclusions about their experiments and thus develop 

an understanding of the phenomenon.  

Despite these differences in learning activities, the effects of worked examples on 

students’ performance success and learning outcomes were less straightforward. 

The worked example students performed better during the task as they more 

accurately identified the relevant elements and their relations in the model. This 

confirmed the second research hypothesis. However, none of the participants 

acquired a complete understanding of any of the four formulas that governed the 

behaviour of the charging capacitor, nor were there cross-conditional differences 

on the posttest. This suggests that the worked examples only enhanced students’ 

learning activities and performance but did not lead to higher learning outcomes. 

The procedure of this study could have brought this about, as the students were 

unaware that their knowledge of the task would be tested afterwards. Possibly the 
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students only focused on performing the task well instead of learning about the 

phenomena. This could be prevented in future research by announcing to students 

that their topical knowledge will be assessed after the inquiry and modelling 

activity. Alternatively, learning outcomes might have been less positive due to the 

design of the worked examples. The worked example students spent 

approximately 10 percent of their time viewing the worked examples in which 

inquiry and modelling behaviour was demonstrated in different domain. Therefore 

the worked example students –compared to the control students– spent less time 

on the domain of the learning task from which their learning outcomes were 

evaluated.  

Performance success and learning outcomes in the present study were quite 

modest. Superficial processing of the worked examples could explain this result. It 

could be that students merely used the worked examples to find out what was 

expected of them (i.e., what activities to perform), rather than to understand the 

rationale of these activities. Supplementing traditional worked examples with self-

explanation prompts has been found to encourage learners to identify the 

underlying principles. Future research should investigate whether this facilitative 

effect generalizes to heuristic worked examples.  

Alternatively, these results might be explained by the slow advancement through 

model progression phases. The posttest addressed the contents of all three phases, 

but (too) many students stayed in the first phase, and few reached the third phase. 

This means that relatively many students were tested on subject matter they had 

not been able to investigate during the session. It could therefore be that the low 

performance and learning outcomes are at least in part due to time constraints 

during the task. Similar problems arose during previous studies in which students 

were not supported by worked examples (Mulder et al., 2011; Mulder, Lazonder, & 

de Jong, 2012). It thus seems that the current worked examples did not help 

students progress through all three phases.  

Future research should examine what is needed for students to advance through 

all model progression phases. The present findings suggest that students could 

either be given more time on task, or more appropriate support. Research on the 

latter option could go in several directions. One possibility is to replace worked 

examples by different, more fruitful forms of support. Scaffolding frameworks 

(e.g., Quintana et al., 2004) provide a good starting point for this line of research. A 

second option would be to improve the application of worked examples, for 

instance by using different example types (e.g., completion problems, process 

worked examples, partial solutions), or by supplementing worked examples with 

self-explanation prompts. A third possibility is to optimize the design of the 

heuristic worked examples. Prior work has extensively investigated the design of 
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traditional worked examples, but the design of heuristic worked examples is 

relatively unexplored. Design principles from traditional worked examples (e.g., 

adding self-explanation prompts) do not necessarily apply to heuristic worked 

examples (Renkl et al., 2009). One issue in particular is that prior research leaves it 

somewhat unclear what should be the exemplifying domain of the heuristic 

worked examples. In some studies the examples were situated in more-or-less the 

same domain as the actual task (e.g. Hilbert & Renkl, 2009, experiment 2; Hilbert et 

al., 2008) whereas other studies used different contents for the heuristic examples 

and actual task (e.g. Hilbert & Renkl, 2009, experiment 1). As domain knowledge 

and inquiry skills are mutually dependent (e.g., Klahr & Dunbar, 1988), the 

effectiveness of the heuristic examples might depend on the subject matter it 

contains.  

To conclude, the present study does not allow for a definitive conclusion on the 

added value of heuristic worked examples to support students on an inquiry task 

combined with modelling. Even though heuristic worked examples were found to 

enhance learning activities and performance success, they did not affect learning 

outcomes. As with any novel application of learning support, continued iterative 

rounds of design and evaluation are needed to discover its true potentials.  
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Introduction 

Inquiry learning environments based on simulations essentially enable students to 

learn science by doing science: they offer interactive resources so students can 

develop a deep understanding of a domain by engaging in scientific reasoning 

processes such as hypothesis generation, experiment design, and evaluating 

evidence. Inquiry learning environments also increasingly incorporate modelling 

facilities for students to articulate their research hypotheses and (acquired) domain 

knowledge. These technological advancements have led to the development of the 

integrated approach to science learning that was pivotal to the research in this 

thesis. This approach, in short, entails that students without prior domain 

knowledge first carry out some exploratory experiments with a simulation to gain 

an initial understanding of the phenomena under investigation. Students who have 

some prior knowledge can skip this step and immediately start sketching a model 

outline to express their (initial/acquired) understanding of the phenomena. 

Subsequently, students form hypotheses which they can explore with the 

simulation in order to transform their model sketch into a runnable model by 

specifying the relations between the variables in the model. During data 

interpretation, learners compare their model to data from the simulation, which 

during the conclusion phase, feeds their decisions to revise the model.  

As the orchestration of these inquiry and modelling activities is both new and 

demanding to students, the general research question of this thesis was: 

How can learning with computer simulations and models be improved by embedded support? 

This general research question was addressed in the four empirical studies 

depicted in Chapters 2 through 5. The first empirical study concerned an 

assessment of students’ need for support by comparing the inquiry and modelling 

activities of junior high school students (aged 14-15), senior high school students 

(aged 18-20), and university students (aged 20-27). The second and third study 

investigated whether model progression (i.e., gradually increasing task 

complexity) could help compensate for the skill deficiencies observed in the first 

study. The final study explored whether complementing model progression with 

worked examples would further enhance students’ inquiry and modelling 

performance and learning. The three intervention studies involved 15 to 17-year 

old high school students from the science track. All participants worked on an 

inquiry learning task in the Co-Lab learning environment (van Joolingen, de Jong, 

Lazonder, Savelsbergh, & Manlove, 2005) which combines learning from 

simulations with learning by modelling. The topic of inquiry was a charging 

capacitor, which students had to investigate through a simulation and then create a 



Summary and general discussion 

99 

computer model of its behaviour. In the present chapter, the main findings from 

these studies are summarized and discussed.  

 

Empirical studies 

Study 1: Assessment of students’ support needs 

The first study, described in Chapter 2, attempted to reveal students’ need for 

support during learning with computer simulations and models. This study sought 

to gain insight into students’ scientific reasoning skill deficiencies by contrasting 

domain novices’ inquiry behaviour and performance to that of a considerably more 

knowledgeable reference group and an intermediate reference group.  

Klahr and Dunbar’s (1988) SDDS model was used as analytical framework to 

predict why and how students’ levels of domain knowledge influence their inquiry 

learning skills and outcomes. Three inquiry skills are central to this model: 

hypothesis generation, experimentation, and evaluating evidence. SDDS assumes 

that students will perform these skills more effectively and efficiently to the extent 

that they possess more domain knowledge. Such superior skills, in turn, are 

assumed to yield higher knowledge gains. In view of this reciprocal influence, it 

was predicted that high prior knowledge students would generate more -and more 

specific- hypotheses, and conduct fewer experiments to build a fully correct model 

than students with intermediate prior knowledge. The same differences were 

expected to occur when comparing intermediate and low prior knowledge 

students. Evaluating evidence, an often neglected inquiry skill, was studied in an 

exploratory fashion.  

Thirty-one students volunteered to participate in this study. Participants were 

selected for their levels of prior domain knowledge and classified as either low-

level novice (10 junior high school students without prior knowledge), high-level 

novice (10 senior high school students from the science track with some prior 

knowledge), or expert (11 university students in electrical engineering). All 

participants performed an unguided physics task within Co-Lab.  

Results showed that experts needed less time to complete the task than high-level 

novices, who needed as much time as low-level novices. The quality of the 

students’ models also differed in favour of the experts, whereas high-level novices 

built better models than low-level novices. Qualitative analyses of students’ 

models revealed that even low-level novices had a pretty good sense of which 

elements to include in their models but largely failed to identify the relationships 

between the model elements.  
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Only few between-group differences were found regarding participants’ learning 

behaviour. The three groups generated equally specific hypotheses, conducted as 

many experiments overall, and had an equal percentage of exploratory 

experiments. Surprisingly, few low-level novices started off by experimenting with 

the simulation to gather domain knowledge. Concerning modelling, experts 

evidenced more model runs than both groups of novices. Analysis of students’ 

evidence evaluation showed that low-level novices rejected hypotheses more often 

than high-level novices and experts —which seems fitting as novices are likely to 

have more incorrect hypotheses. Accepting and modifying hypotheses occurred as 

often in all three groups. However, the hypotheses about relations that novices 

generated and tested were so specific (i.e., only quantitative in nature) that they 

were most likely based on guesswork rather than students’ inquiry or modelling 

activities. Analysis of the reasoning behind model modifications bore this out: 

while experts and high-level novices typically motivated their changes, only few of 

the low-level novices’ changes were guided by reasoning. 

These findings point to a clear need for support. Low-level novices’ model quality 

scores were very low, indicating that they acquired almost no knowledge from 

their inquiry. This seems due to the fact that these students generally exhibited the 

same inquiry behaviour as their more knowledgeable counterparts. However, 

without prior knowledge (and instructional support) this expert-like behaviour is 

probably less appropriate and certainly less effective. Support for inquiry learning 

should therefore try to better attune students’ inquiry activities to their level of 

domain knowledge, or provide domain support in order to increase the 

effectiveness of their natural inquiry behaviour. From these findings it was 

concluded that it might be fruitful to restrain domain novices’ natural tendency to 

engage in quantitative modelling from scratch by first having them create models 

that are qualitatively specified, and then enabling them to transfer these qualitative 

relations into quantitative ones. 

 

Study 2: Model progression 

Given the results of the previous study, the second study (described in Chapter 3) 

investigated the effects of model progression. Model progression (i.e., gradually 

introducing a tasks’ complexity), was expected to enhance performance success as 

it better attunes students’ inquiry behaviour to their level of domain knowledge. 

Following White and Frederiksen (1990), two types of model progression were 

distinguished. Model order progression (MOP) gradually increases the specificity 

of the relations between variables, whereas model elaboration progression (MEP) 

gradually expands the number of variables in the task. As MOP was intended to 
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scaffold learners’ relation construction –a key problem to domain novices– it was 

hypothesized that MOP would be the better means to support students.  

Based on class-ranked pretest scores, participants were assigned to three 

conditions (MOP, n= 28; MEP, n =26; control condition, n = 30). All participants 

performed an inquiry learning physics task within Co-Lab, an inquiry learning 

environment in which participants could experiment through a computer 

simulation, and express hypotheses and (acquired) understanding in a system 

dynamics model.  

All conditions used the same instructional content (i.e., charging capacitors), but 

differed with regard to the support mechanisms. Participants in the control 

condition worked with the standard configuration of the environment and thus 

received no support. As such, the specifics of this condition were comparable to 

those of the low-level novices in the first study. Participants in the model order 

progression (MOP) condition received a full-complex simulation and were asked 

to induce and build increasingly specific models. The initial phase only dealt with 

the model structure: students were asked to identify and sketch the model with its 

variables and relations. The consecutive phases deal with the model content. 

Students had to specify the relationships between the elements qualitatively (e.g., if 

resistance increases, then current decreases) in Phase 2 and quantitatively (e.g., 

I=V/R) in Phase 3. In the model elaboration progression (MEP) condition, the 

complexity of the simulation was gradually increased by adding components to 

the electrical circuit. Over phases, participants had to extend their model to 

incorporate the new elements presented in the simulation and their associated 

knowledge components. 

Model progression in general was found to lead to higher performance success, 

and participants in the MOP condition outperformed those from the MEP 

condition. This result supports the hypothesis that model order progression is 

more in keeping with domain novices’ learning needs. However, observed 

learning gains, although statistically significant, were quite modest as even the 

MOP-students obtained merely one third of the maximum score on average. One 

reason could be that few MOP students completed all three phases of the task 

sequence. Analysis of these students’ learning activities and models revealed that 

many students progressed from the first to the second phase, but few went on to 

the third phase. From these findings it was concluded that additional support is 

needed.  
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Study 3: Model progression fine-tuned 

The third study (described in Chapter 4) aimed to further examine model order 

progression. Presumably, the model order progression students in the second 

study (Chapter 3) got stuck in the second phase as they entered this phase with a 

rather simple model. This simple model probably provided them with an 

insufficient basis for the complex task at hand in the second phase. Such 

‘premature’ progressions could be avoided by prohibiting students to enter 

subsequent phases until sufficient understanding has been acquired. An 

alternative solution might be to allow students who get stuck in a particular phase 

to return to previous phases to remediate knowledge gaps —an option that was 

unavailable to students in the previous study. Both alternatives were hypothesized 

to increase participants’ performance success and their chances of successfully 

progressing through all phases. 

Based on class-ranked pretest scores, sixty-one participants were assigned to one of 

three conditions (restricted, n = 19; semi-restricted, n = 19; unrestricted, n = 22). All 

participants performed the same inquiry learning physics task within Co-Lab, 

which was supported by model order progression (MOP) as used in the previous 

study, but they differed with regard to the requirements to cycle through model 

progression phases. Participants in the restricted condition could progress to 

subsequent phases only if sufficient knowledge had been acquired. Participants in 

the semi-restricted condition received the ‘standard’ model progression, they could 

enter subsequent phases at will (comparable to the MOP condition in the second 

study). Participants in the unrestricted condition were free to enter both 

subsequent and previous phases.  

The conditions for changing model progression phases was found to affect the 

learning process. Compared to the semi-restricted condition, the restricted students 

reached the second phase less often, but the students who did had significantly 

better models. This seems due to the fact that the restricted students were simply 

prohibited to enter Phase 2 with insufficient knowledge. The unrestricted students, 

by contrast, progressed to subsequent phases more often than the semi-restricted 

students. However, the quality of the unrestricted participants’ intermediate 

models did not differ from the quality of the semi-restricted participants’ 

intermediate models, which suggests that the unrestricted participants used their 

navigation freedom wisely.  

Even though both model progression variants influenced the learning process, they 

did not enhance students’ performances success. It thus seems that neither more 

liberal nor more strict requirements to change model progression phases are 

sufficient to further improve the effectiveness of model progression. It thus seems 

that students need more explicit support in order to better understand what the 
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activities in each model progression phase entail, and how they should be 

performed.  

 

Study 4: Model progression complemented with worked examples 

The fourth study conducted (described in Chapter 5) aimed to examine the 

effectiveness of heuristic worked examples as additional support. Heuristic 

worked examples were proposed by Hilbert and colleagues (Hilbert & Renkl, 2009; 

Hilbert, Renkl, Kessler, & Reiss, 2008) as means to extend the application of 

worked examples from well-structured problem solving tasks to more ill-

structured, and hence more complex tasks. Unlike ‘traditional’ worked examples 

that provide students with a single algorithm to solve one particular type of 

problem, heuristic worked examples outline a series of problem solving strategies 

and demonstrate their usage in or across a range of related tasks. The heuristic 

worked examples were hypothesized to influence students’ learning activities’ 

sequence and improve students’ performance and learning.  

Based on class-ranked pretest scores eighty-two participants were assigned to 

either the worked examples condition (n = 46) or the control condition (n = 36). As 

in the previous studies, students in both conditions had to investigate a charging 

capacitor and create a computer model of its behaviour. This task was divided in 

three phases, comparable with the MOP and semi-restricted conditions in the 

second and third study, respectively. Students in the worked examples condition 

could consult two heuristic worked examples for each phase. These examples came 

in the form of annotated videos that showed the inquiry or modelling activities of 

an anonymous person on a comparable task in a different domain. Students in the 

control condition did not receive these worked examples. 

Main findings indicate that students in both conditions had comparable and low 

pretest scores, needed quite the same amount of time on task, but spent this time 

differently. As instructed by the worked examples, students in this condition did 

more experiments with the simulation and took more time to analyse and interpret 

the outcomes. Control students, by contrast, largely ignored the simulation and 

spent most of their time creating and testing their model. This proved rather 

ineffective, as the models of students in the worked example condition contained 

more correct variables and relations. Despite this performance difference, however, 

posttest scores were comparable across conditions, suggesting that worked 

example students performed better, but did not learn more. 
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General discussion 

After having summarized the experimental studies comprised in this thesis, this 

concluding section discusses some cross-study issues from a bird’s-eye view.  

Participants in the studies reported in this thesis mainly were high school students 

who were largely incognizant of the topic of charging capacitors. Literature 

suggests that domain knowledge influences students’ inquiry process and thus 

how much they can pick up from an inquiry learning task (Hmelo, Nagarajan, & 

Day, 2000; Klahr & Dunbar, 1988; Lazonder, Wilhelm, & Hagemans, 2008; 

Schauble, Klopfer, & Raghavan, 1991). A review of school curricula and teacher 

statements showed that students were (or should be) familiar with electrical 

circuits and concepts such as power source, resistance and Ohm’s law. This 

knowledge is prerequisite to the topic of charging capacitors which was not yet 

taught in these students’ physics classes. To confirm both assumptions, a prior 

knowledge test was administered that addressed both the allegedly familiar 

knowledge about electrical circuits as well as the new and unfamiliar knowledge 

about charging capacitors. Students’ performance on this test (a score of 1 or 2 out 

of 8) indicated that students could indeed be considered domain novices. In 

hindsight, however, this low score also suggests that they may have lacked that 

necessary prerequisite knowledge, which may have negatively impacted their 

inquiry process. To prevent the negative influence of too low entry levels of 

domain knowledge in future research, the prerequisite knowledge could be 

recapitulated before or during the studies (Lazonder, Wilhelm, & van Lieburg, 

2009). Students then are likely to benefit even more from the support they receive. 

For assessing the learning process, the three intervention studies reported in 

Chapters 3 to 5 relied almost exclusively on logfile analysis. The logfiles generated 

by the Co-Lab learning environment provided data on the frequency with which 

students’ performed experiments and how they evaluated data from these 

experiments. For additional information regarding students’ hypotheses, 

qualitative information was obtained through think aloud protocols in the first 

study (Chapter 2). Think aloud protocols offer information about what students are 

doing, and why they are doing it while they are doing it (Ericsson & Simon, 1993). 

However, whilst think alouds can provide rich data, some participants may find it 

difficult to think aloud during tasks that require cognitive processing (Branch, 

2000). Therefore, and because the aim of successive studies was to reveal 

differences in performance success, only the non-obtrusive method of logfile 

analysis was used in these studies, which admittedly may have limited our view 

on what really was going on from a cognitive perspective. 
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From the first study onwards, the models were evaluated using two coding rubrics 

that were derived from Manlove, Lazonder, and de Jong’s (2006) model coding 

rubric. A distinction was made between the structure and content of a model, and 

separate scores were computed for each aspect. The model structure score 

indicated the number of correctly specified variables and relations in a model; the 

model content score represented students’ understanding of the four physics 

equations that define the behaviour of a charging capacitor. In later studies where 

model order progression was applied, the knowledge as addressed by these 

measures was closely related to the content of the first (model sketching) and third 

(quantitative relations) model progression phases, leaving the qualitative 

knowledge of Phase 2 unaddressed. For the second study (Chapter 3), adding a 

qualitative component to either of the coding rubrics would have been unfair in a 

comparison to the other two conditions who received no model order progression 

support and thus did not engage in qualitative modelling. For the third and fourth 

study, adding a qualitative component to either of the rubrics might have led to a 

more complete assessment of the models. This adjustment was made in a recent re-

analysis of the third study’s data (Mulder, Lazonder, de Jong, Anjewierden, & 

Bollen, 2012). Although the qualitative component increased the scores on the 

whole, the ratio of the groups’ scores appeared comparable to what was found in 

the study reported in Chapter 4.  

For the studies in this thesis a software agent was developed, which was able to 

assess the students’ models during the task (for more information on the technical 

aspects of the agent, see Anjewierden et al., 2012). The software agent had two 

major functions. First, it enabled students to go through complete hypothesis 

cycles in the first model order progression phase. In this phase, where students 

have to identify relationships between elements without specifying them, it was 

technically impossible for the model editor to execute these models. Model runs in 

this phase therefore activated the software agent which made that students could 

still “perform” experiments with their models. The agent presented the results of 

these experiments in a bar chart tool in order for students to evaluate the data of 

their experiments so that they could reach conclusions. Second, in the third study 

(Chapter 4), the software agent functioned as a gate-keeper to control the restricted 

students’ progression over phases. The restricted students in that study were only 

allowed to progress to a subsequent phase if their model was of sufficient quality. 

For future research the software agent holds promise as it enables a more 

sophisticated, and possible effective approach to give adaptive support on the 

students’ actions. A software agent can detect patterns in the students’ inquiry and 

modelling activities, and use this information to give tailor-made assistance and 

feedback at times appropriate. Such techniques have been successfully applied in 

small-scale modelling tasks (Bravo, van Joolingen, & de Jong, 2009), and are 
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currently being implemented in more comprehensive model-based inquiry 

learning environments (de Jong et al., 2010). Research and development of 

techniques and environments like these could pave the way to active and effective 

methods of science education. Questions remain, however, as to what exactly this 

type of adaptive feedback should look like. The fourth study (Chapter 5) suggests 

that students need a more explicit account of what the activities in each model 

progression phase entail and how they should be performed. The worked 

examples were generally accessible to all students in the worked example 

condition. Providing this information in a just-in-time fashion by a software agent 

might improve students’ performance even more, what future research should 

explore.  

Previous research has provided an elaborate account of scaffolds that aim to 

compensate for students’ skill deficiencies. Examples include proposition tables to 

help generate hypotheses (de Jong, 2006), adaptive advice for extrapolating 

knowledge from simulations (Leutner, 1993), and regulative scaffolds to assist 

students in planning, monitoring, and evaluating their inquiry (Manlove et al., 

2006). Modelling support thus far has mainly focussed on making it easier for 

students to transfer their ideas into a formal model, for instance by creating 

graphical modelling representations (Löhner, 2005) or integrating drawing 

facilities in the modelling process (van Joolingen, Bollen, & Leenaars, 2010). 

However, the empirical foundations underlying the contents of these supports 

often remain hidden to the public eye. In this thesis, support was developed from 

the insight into students’ scientific reasoning skill deficiencies that was acquired in 

the first empirical study.  

But do students who perform better also learn more? As performance success 

appears a prerequisite for learning, the first studies in this thesis did not address 

this question. Theoretical and empirical evidence suggests that the performance 

measures (i.e., model quality scores) that assessed the instructional effects of model 

progression are indicative of the knowledge students acquired during the 

experiment. This assumption is based on constructionism, an instructional 

paradigm in which learning is considered synonymous to the knowledge 

construction that takes place when learners are engaged in building objects (Kafai 

& Resnick, 1996) Research has confirmed that the construction of models is 

associated with cognitive learning (e.g., van Borkulo, 2009) and that the quality of 

students’ models is associated with their reasoning processes (Sins, Savelsbergh, & 

van Joolingen, 2005). It thus seemed plausible to infer the instructional effects of 

model progression the students’ task performance. However, to paint a more 

complete picture, a posttest measuring learning outcomes was administered in the 

final study reported in Chapter 5. Contrary to expectations, the favourable effects 

found on the performance measure did not show on the learning outcomes 
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measure. One possible explanation is that the posttest was not sensitive enough to 

the students’ learning during the task. The posttest was construed to cover the 

contents of all model progression phases. As only few students reached the third 

phase, relatively many students were tested on subject matter they had not been 

able to investigate during the task. Future research should investigate how 

learning outcomes can best be assessed..  

 

Overall conclusion and practical implications 

The main goal of the current research was to find an answer to the question:  

How can learning with computer simulations and models be improved by embedded support? 

Via an iterative series of studies it was first confirmed that unsupported students 

do perform poorly on an inquiry learning task combined with modelling. The 

study in Chapter 2 showed that integrating learning from computer simulations 

and learning by modelling was problematic to students. The unsupported students 

hardly experimented with the simulation from which they could learn about the 

charging of the capacitor, and failed to build a correct model. These results suggest 

that students might benefit from support that helps them to better attune their 

inquiry behaviour to their level of domain knowledge, especially regarding 

relation construction in the models. This support could take the form of model 

order progression, which enables students to gradually increase the specificity of 

the relations between variables in their models. Students then first have to identify 

and sketch the model with its variables and relations prior to specifying the model 

content. This model content gradually increases in complexity too: students first 

have to provide a qualitative specification of each relationship (e.g., if resistance 

increases, then current decreases), and then translate these qualitative relations 

into quantitative specifications (i.e., I = V/R). 

Model order progression was indeed found to increase students’ performance on 

an inquiry learning task combined with modelling. However, not to a satisfactory 

degree. In an attempt to fine-tune model order progression no effect was found for 

restricting students to enter subsequent phases until sufficient understanding has 

been acquired, nor for allowing students who get stuck in a particular phase to 

return to previous phases to remediate knowledge gaps. It was concluded that 

students need additional support in order to better understand what the activities 

in each model progression phase entail, and how they should be performed. This 

support –in the form of worked out examples– was found to significantly improve 

students’ performance.  
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These positive results were found despite the students lack of prerequisite 

knowledge of the domain. Even though electrical circuits had been covered as part 

of their curriculum, students failed to reproduce this basic knowledge on the prior 

knowledge test. Still, a combination of model progression and worked examples 

offered a notable, albeit modest improvement in students’ learning from 

simulations combined with modelling. As for practical implications, students are 

likely to benefit more from this learning approach as their entry level of domain 

knowledge is sufficient. Therefore, in actual practice, teachers should keep an eye 

out to detect these knowledge gaps in time. It would be advisable that teachers 

respond to these knowledge gaps by first recapitulating the required prior 

knowledge.  

Alternative suggestions that have consistently been offered throughout this thesis 

include extending time on task and providing additional support. However, 

teachers may consider extra class time unfeasible or undesirable, and one might 

indeed wonder how much extra time should be devoted to a relatively small topic 

such as the charging of a capacitor. Even though inquiry learning admittedly takes 

more time than direct instruction, the scope of an inquiry unit should match the 

amount of time available in the curriculum. A more practical solution might 

therefore be to offer additional support. In actual practice, teachers can provide 

students with the relevant domain knowledge or procedural assistance during the 

task. As a result, students can gain from all the benefits that inquiry learning and 

modelling have to offer (e.g., Campbell, Zhang, & Neilson, 2011; Deslauriers & 

Wieman, 2011; Rutten, van Joolingen, & van der Veen, 2012; van Borkulo, 2009; van 

Joolingen et al., 2005), without getting stuck by the difficult challenges that this 

integrated approach poses. However, for teachers who wish to implement learning 

from simulations combined with modelling, we advise to supplement the inquiry 

and modelling task with model order progression and worked examples.  
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Inleiding 

Elektronische leeromgevingen voor onderzoekend leren bieden leerlingen de 

mogelijkheid om natuurkundige verschijnselen te bestuderen én zich een beeld te 

vormen van wat ‘onderzoek doen’ inhoudt. Computersimulaties vormen vaak de 

basis voor dit soort leeromgevingen, waarin leerlingen door systematisch te 

experimenteren (d.w.z. hypotheses opstellen, experimenten uitvoeren en het 

resultaat van deze experimenten evalueren) de eigenschappen van natuurkundige 

materialen en verschijnselen leren begrijpen. Steeds vaker worden er ook software 

tools voor modelleren toegevoegd aan deze leeromgevingen. Deze combinatie van 

onderzoekend leren met simulaties en modelleren ondersteunt het iteratieve 

onderzoekend leerproces doordat leerlingen de opgedane kennis in een model 

kunnen weergeven en dit model vervolgens kunnen toetsen en waar nodig 

aanpassen of verfijnen. 

Ondanks de mogelijkheden die dergelijke elektronische leeromgevingen bieden, 

blijken leerlingen behoefte te hebben aan ondersteuning van het leerproces. 

Vandaar dat de overkoepelende onderzoeksvraag voor de in dit proefschrift 

beschreven studies, was: 

Hoe kan onderzoekend leren met computersimulaties en modellen worden verbeterd door 

geïntegreerde ondersteuning?  

Om deze vraag te beantwoorden zijn vier studies uitgevoerd. Tijdens deze studies 

werkten middelbare scholieren in de Co-Lab leeromgeving aan een onderzoekend 

leren-taak over het natuurkunde onderwerp ‘opladen van een condensator’. In 

Studie 1 is geprobeerd de ondersteuningsbehoefte van leerlingen tijdens het leren 

met simulaties en modellen in kaart te brengen. In Studie 2 is onderzocht of 

modelprogressie (het in kleine stapjes complexer maken van de leertaak) in de 

vastgestelde ondersteuningsbehoefte voorziet. In Studie 3 zijn twee alternatieven 

om modelprogressie te verbeteren onderzocht. In Studie 4 is tenslotte onderzocht 

of de toevoeging van uitgewerkte voorbeelden het onderzoekend leren positief 

beïnvloedt.  

 

Studie 1: De ondersteuningsbehoefte van leerlingen 

De eerste studie, beschreven in Hoofdstuk 2, was bedoeld om inzicht te krijgen in 

de ondersteuningsbehoefte van leerlingen tijdens het leren met 

computersimulaties en modellen. In deze studie is gekeken welke 
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onderzoeksvaardigheden de leerlingen wel en niet uit zichzelf kunnen toepassen. 

Dit werd gedaan door leerlingen zonder inhoudelijke kennis te vergelijken met een 

referentiegroep met een veel hoger kennisniveau en een tussenliggende referentie 

groep. 

Drie onderzoeksvaardigheden stonden centraal: hypothesen opstellen, 

experimenteren en resultaat van deze experimenten interpreteren en beoordelen. 

Er werd verwacht dat leerlingen deze vaardigheden effectiever en efficiënter 

kunnen uitvoeren al naar gelang hun inhoudelijke kennis toeneemt. Betere 

onderzoeksvaardigheden zorgen op hun beurt voor een grotere kennistoename. In 

het licht van deze wederkerige invloed werd voorspeld dat leerlingen met een 

hoger kennisniveau meer (en meer specifieke) hypotheses opstellen, en minder 

experimenten hoeven uit te voeren om een volledig correct model te bouwen dan 

leerlingen van het tussenliggende kennisniveau. Vergelijkbare verschillen werden 

verwacht bij een vergelijking van de leerlingen met het tussenliggende 

kennisniveau en de leerlingen zonder voorkennis. Er waren geen vooraf 

opgestelde verwachtingen ten aanzien van de derde onderzoekend leren 

vaardigheid  (d.w.z. resultaat van de experimenten interpreteren en beoordelen). 

Eenendertig leerlingen deden mee aan deze studie. Deelnemers waren geselecteerd 

op basis van hun kennisniveau en worden aangeduid als low-level novices (10 

leerlingen uit 3 VWO), high-level novices (10 leerlingen uit 6 VWO) of experts (11 

universitaire studenten elektrotechniek). Alle deelnemers werkten aan een 

onderzoekend leren taak over het opladen van een condensator, met de 

elektronische leeromgeving Co-Lab waarin zij experimenten konden doen met een 

computer simulatie en vervolgens hun opgedane kennis in een model moesten 

weergeven.  

Resultaten gaven aan dat experts minder tijd nodig hadden om de taak af te 

ronden dan de high-level novices, die evenveel tijd nodig hadden als de low-level 

novices. De kwaliteit van de modellen verschilden ook tussen de groepen: de 

experts maakte de beste modellen gevolgd door de high-level novices en tot slot de 

low-level novices. Kwalitatieve analyses van deze modellen lieten zien dat zelfs de 

low-level novices redelijk goed wisten te bepalen welke variabelen in het model 

van belang waren, maar niet hoe deze variabelen met elkaar samen hangen (m.a.w. 

de relaties tussen de variabelen).  

Er werden slechts enkele verschillen gevonden in het leergedrag van de 

deelnemers. De drie groepen genereerden even specifieke hypotheses en voerden 

evenveel experimenten uit; bovendien was een vergelijkbaar percentage van deze 

experimenten exploratief. Het was verrassend dat slechts weinig low-level novices 

begonnen met experimenteren met de simulatie om domeinkennis op te doen. 

Tijdens het modelleren runden  de experts hun model vaker dan de beide novice 
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groepen. Een analyse van de derde onderzoekend leren vaardigheid (resultaat van 

de experimenten interpreteren en beoordelen) gaf aan dat low-level novices vaker 

hun hypothese verwierpen dan high-level novices en experts. Dit is waarschijnlijk 

terecht, omdat het aannemelijk is dat hun hypotheses vaker incorrect waren. Het 

accepteren en wijzigen van hypotheses kwam in de drie groepen even vaak voor. 

De hypothesen van de novices waren echter zo specifiek dat ze waarschijnlijk 

willekeurig dingen aan het proberen waren. Uit de analyse van de redenaties 

achter aanpassingen aan het model kwam dit ook naar voren: de experts en high-

level novices beredeneerden deze aanpassingen, terwijl de low-level novices hun 

aanpassingen niet inhoudelijk konden onderbouwen.  

Deze bevindingen wijzen op een duidelijke ondersteuningsbehoefte. De kwaliteit 

van de modellen die door de low-level novices waren gemaakt doet vermoeden 

dat deze leerlingen geen kennis hebben verworven tijdens de taak. Dit lijkt te 

komen doordat de low-level novices een vergelijkbare onderzoeksstrategie 

hanteerden als de deelnemers met meer voorkennis. Echter, zonder voorkennis (en 

ondersteuning) was deze strategie waarschijnlijk minder geschikt en zeker minder 

effectief. Ondersteuning bij onderzoekend leren zou er daarom voor moeten 

zorgen dat leerlingen hun onderzoeksvaardigheden beter afstemmen op hun 

kennisniveau. Leerlingen hebben er waarschijnlijk baat bij wanneer zij niet direct 

met kwantitatief (d.w.z. zeer specifiek) modelleren kunnen beginnen, maar in 

plaats daarvan modellen moeten maken waarin de relaties geleidelijk aan steeds 

specifieker moeten worden gedefinieerd.  

 

Studie 2: Modelprogressie 

Naar aanleiding van deze resultaten is in de tweede studie (zie Hoofdstuk 3) 

onderzocht of modelprogressie in de ondersteuningsbehoefte van leerlingen kan 

voorzien. Het basisidee achter modelprogressie is dat een leertaak wordt 

opgedeeld in kleine stapjes van toenemende complexiteit. Er werden twee typen 

modelprogressie onderscheiden. Bij model order progressie (MOP) neemt de 

complexiteit toe doordat de relatiebeschrijvingen steeds specifieker worden, terwijl 

bij model elaboratie progressie (MEP) de complexiteit toeneemt doordat het aantal 

elementen in het model wordt uitgebreid. Omdat uit de vorige studie naar voren 

kwam dat leerlingen, zonder ondersteuning, wel in staat zijn om de belangrijke 

variabelen te identificeren, maar niet kunnen bepalen hoe deze variabelen met 

elkaar samenhangen, werd verwacht dat MOP –die ingrijpt op de relaties tussen 

variabelen– de optimale vorm van ondersteuning is.  
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Om deze veronderstelling te onderzoeken zijn 4-VWO leerlingen op grond van 

hun voortoetsscores gematched over drie condities (MOP, n = 28; MEP, n = 26; 

controle, n = 30). Alle leerlingen werkten aan dezelfde taak over het opladen van 

een condensator in een elektrisch circuit in een leeromgeving die was afgestemd op 

de kenmerken van hun conditie. In de MOP conditie was het modelleren in drie 

fases opgedeeld. In de eerste MOP fase was het modelleren beperkt tot het 

schetsen van de structuur van het model (een weergave van de variabelen en de 

relaties). In de tweede MOP fase moesten de leerlingen de relaties kwalitatief 

specificeren (bijv. als de weerstand toeneemt, dan neemt de stroomsterkte af). In de 

derde MOP fase moesten de leerlingen de relaties kwantitatief specificeren (bijv. 

I=V/R). In elke fase moest het gemaakte model de volledig complexe simulatie 

beschrijven. Ook in de MEP conditie was de simulatie in drie fases opgedeeld. De 

simulatie in de eerste MEP fase bevatte een elektrisch circuit met een batterij en een 

lampje. In de tweede MEP fase was deze simulatie uitgebreid met een tweede, 

parallel geschakeld, lampje; in de derde MEP fase werd een condensator aan de 

simulatie toegevoegd. In elke fase moesten de leerlingen de inzichten die ze over 

de simulatie opdeden direct kwantitatief modelleren. De leertaak in de controle 

conditie was niet opgedeeld in fases, de leerlingen werkten met de volledig 

complexe simulatie die ze direct kwantitatief moesten modelleren.  

Zoals verwacht bleek dat de condities van elkaar verschilden in het aantal correcte 

relaties in de modellen, maar niet in het aantal correcte variabelen. De leerlingen 

die ondersteund werden door modelprogressie maakten betere modellen dan de 

leerlingen in de controle conditie. Bovendien waren de modellen van de MOP 

leerlingen beter dan die van de MEP leerlingen.  

Deze resultaten laten zien dat modelprogressie als ondersteuning bij 

onderzoekend leren gecombineerd met modelleren effectief kan zijn. Bovendien 

blijkt dat de dimensie waarop de progressie plaatsvindt van invloed is op de mate 

waarin leerlingen baat hebben bij modelprogressie. Uit eerder onderzoek is 

gebleken dat leerlingen behoefte hebben aan ondersteuning op het gebied van de 

relaties tussen variabelen. Model order progressie, waarbij leerlingen modellen 

maken waarbij deze relaties in specificiteit toenemen, blijkt een positief effect te 

hebben op het aantal relaties dat leerlingen correct in hun model weergeven. Dit 

veronderstelt dat model order progressie aansluit bij de ondersteuningsbehoefte 

van leerlingen.  

Echter, hoewel model order progressie tot significant betere modellen leidde, 

waren  de leerprestaties enigszins teleurstellend: zelfs de MOP-leerlingen 

behaalden gemiddeld slechts een derde van de maximale score. Op basis van deze 

studie zijn twee alternatieven geopperd om model order progressie te verbeteren. 

Het eerste alternatief betreft een uitbereiding met een software-agent die 



Chapter 7 

116 

functioneert als ‘poortwachter’ om te voorkomen dat leerlingen met onvoldoende 

kennis naar een volgende fase gaan. Het tweede alternatief is juist het volledig 

vrijgeven van faseovergangen –zowel naar volgende als voorgaande fases– om 

beter aan te sluiten bij het iteratieve aspect van onderzoekend leren.  

 

Studie 3: Modelprogressie verder verfijnd 

Naar aanleiding van de resultaten uit de vorige studie, zijn in de derde studie (zie 

Hoofdstuk 4) de twee alternatieven om modelprogressie te verbeteren onderzocht.  

Dit onderzoek is uitgevoerd bij leerlingen uit 4 VWO die op basis van 

voortoetsscores werden gematched over drie condities (begrensd, n = 19;  semi-

begrensd, n = 19; onbegrensd, n = 22). Alle leerlingen werkten aan dezelfde taak 

over het opladen van een condensator in een elektrisch circuit, waarin model order 

progressie (MOP) was toegepast zoals beschreven in de vorige paragraaf. De 

condities verschilden met betrekking tot de restricties bij de overgang van 

modelprogressie fases. Leerlingen uit de begrensde conditie konden alleen 

doorgaan naar een volgende fase op het moment dat hun modellen voldoende 

kennis weergaven. Leerlingen uit de semi-begrensde conditie hadden de ‘standaard’ 

vorm van modelprogressie (vergelijkbaar met MOP uit de vorige studie) en waren 

dus vrij om naar de volgende fase te gaan als ze dat wilden. Zij konden echter niet 

terugkeren naar een eerder bezochte fase. Leerlingen uit de onbegrensde conditie 

waren vrij om naar zowel de volgende als de vorige fases te gaan.  

Restricties op de faseovergangen bleken het leerproces te beïnvloeden. In 

vergelijking met de semi-begrensde conditie gingen er minder leerlingen uit de 

begrensde conditie naar de tweede fase, maar de leerlingen uit de begrensde 

conditie die wel naar de tweede fase gingen, deden dat met betere modellen. 

Leerlingen uit de onbegrensde conditie gingen daarentegen vaker naar de tweede 

fase dan de semi-begrensde leerlingen. Zij deden dit echter met een vergelijkbare 

kwaliteit van modellen.  

Hoewel beide alternatieven het leerproces beïnvloedden, bleken zij de 

leerprestaties niet te verbeteren. Het lijkt er dus op dat zowel het vrijlaten als 

begrenzen van de faseovergangen de effectiviteit van modelprogressie niet 

verbetert. Waarschijnlijk hebben leerlingen dus behoefte aan extra ondersteuning 

om beter te begrijpen wat er in elke modelprogressiefase van ze verwacht wordt en 

hoe ze daarbij te werk moeten gaan.  
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Studie 4: Modelprogressie met uitgewerkte voorbeelden 

De vierde studie (zie Hoofdstuk 5) onderzocht de effectiviteit van het toevoegen 

van heuristische uitgewerkte voorbeelden aan modelprogressie. Heuristische 

uitgewerkte voorbeelden onderscheiden zich van ‘gewone’ uitgewerkte 

voorbeelden doordat zij een serie strategieën laten zien om een complexe leertaak 

aan te pakken, in plaats van één enkele algoritmische oplossing voor een 

eenvoudige leertaak. Heuristische uitgewerkte voorbeelden kunnen dus de 

onderzoeksvaardigheden voor elke modelprogressiefase demonstreren. Hierdoor 

werd verwacht dat heuristische uitgewerkte voorbeelden de activiteiten van 

leerlingen zouden verbeteren en daardoor ook hun leerprestatie en -uitkomsten.  

Op basis van voortoetsscores werden 4 VWO leerlingen gematched over twee 

condities (uitgewerkte voorbeelden, n = 46; controle, n = 36). Alle leerlingen 

werkten aan dezelfde taak over het opladen van een condensator in een elektrisch 

circuit, waarin model order progressie was toegepast zoals beschreven in de vorige 

twee studies. De leerlingen uit de uitgewerkte voorbeelden conditie konden per 

fase twee heuristische uitgewerkte voorbeelden raadplegen. Deze uitgewerkte 

voorbeelden werden aangeboden als een video die liet zien hoe een anoniem 

persoon de onderzoeksvaardigheden toepast in een vergelijkbare taak in een ander 

domein. De leerlingen uit de controle conditie hadden geen toegang tot deze 

uitgewerkte voorbeelden.  

De resultaten gaven aan dat de leerlingen een vergelijkbaar niveau van voorkennis 

hadden, evenveel tijd nodig hadden voor de taak, maar verschilden in hoe ze deze 

tijd besteedden. Zoals de uitgewerkte voorbeelden aangaven, deden leerlingen uit 

de gelijknamige conditie meer experimenten met de simulatie en gebruikten ze 

meer tijd om de uitkomsten van de experimenten te evalueren. De leerlingen uit de 

controle conditie deden daarentegen weinig met de simulatie; zij besteedden het 

overgrote deel van hun tijd aan het maken en testen van hun model. Deze 

werkwijze bleek weinig effectief: de leerlingen uit de uitgewerkte voorbeelden 

conditie maakten betere modellen dan de leerlingen in de controle conditie. 

Ondanks deze verschillen in werkwijze en leerprestatie, waren er geen verschillen 

op de natoets. Dit geeft aan dat de leerlingen uit de uitgewerkte voorbeelden 

conditie tijdens de taak beter presteerden, maar hier niet meer van leerden.  

 



Chapter 7 

118 

Conclusie 

Samengevat laten deze vier studies zien dat leerlingen ondersteuning nodig 

hebben bij het leren met computersimulaties en modellen. Deze ondersteuning 

moet leerlingen helpen de onderzoeksvaardigheden toe te passen op een niveau 

dat past bij hun kennisniveau, met name bij het definiëren van de relaties tussen de 

variabelen in het model. Dergelijke ondersteuning kan worden aangeboden in de 

vorm van model order progressie, waarbij de complexiteit van een taak gradueel 

oploopt door een toenemende specificiteit van de relatiebeschrijvingen. Leerlingen 

hoeven dan eerst alleen een structuur van het model te geven (een weergave van 

de variabelen en relaties). In de tweede modelprogressiefase moeten de leerlingen 

dan de relaties kwalitatief specificeren en pas in de derde modelprogressiefase 

hoeven zij de relaties kwantitatief te specificeren.  

Hoewel model order progressie de prestatie van leerlingen op de taak verbeterde, 

was deze verbetering nog niet toereikend. Uit een poging om modelprogressie te 

verfijnen bleek dat het begrenzen noch het vrijlaten van de mogelijkheden om van 

fase te wisselen de leerprestaties kon verbeteren. Er werd geconcludeerd dat 

leerlingen waarschijnlijk meer baat zouden hebben bij extra ondersteuning die 

aangeeft wat er in elke modelprogressie fase van ze verwacht wordt en hoe ze te 

werk moeten gaan. Deze ondersteuning –in de vorm van heuristische uitgewerkte 

voorbeelden– leidde tot een significante verbetering van de leerprestaties.  
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